Soucaille P, Meynial SI, Voelker F, Figge R, inventors. Microorganisms and methods for production of 1,2-propanediol and acetol. 2008.
Saxena RK, Anand P, Saran S, Isar J, Agarwal L. Microbial production and applications of 1,2-propanediol. Indian J Microbiol. 2010;50:2–11. doi:10.1007/s12088-010-0017-x.
Article
CAS
Google Scholar
Lloyd L. Handbook of industrial catalysts. Boston: Springer Science + Business Media LLC; 2011.
Book
Google Scholar
Chauvel A, Lefebvre G. Petrochemical processes: volume 2: major oxygenated, chlorinated and nitrated derivatives. Paris: Éditions Technip; 1989.
Google Scholar
Bennett GN, San KY. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol. 2001;55:1–9.
Article
CAS
Google Scholar
Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem. 2008;10:13–30. doi:10.1039/B710561D.
Article
CAS
Google Scholar
Cameron DC, Cooney CL. A novel fermentation: the production of R(−)–1,2–propanediol and acetol by Clostridium thermosaccharolyticum. Nat Biotechnol. 1986;4:651–4. doi:10.1038/nbt0786-651.
Article
CAS
Google Scholar
Jung J, Choi E, Oh M. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J Microbiol Biotechnol. 2008;18:1797–802.
CAS
Google Scholar
Jung J, Yun HS, Lee J, Oh M. Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol. 2011;21:846–53.
Article
CAS
Google Scholar
Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng. 2011;108:867–79. doi:10.1002/bit.22993.
Article
CAS
Google Scholar
Li H, Liao JC. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Fact. 2013;12:4. doi:10.1186/1475-2859-12-4.
Article
CAS
Google Scholar
Niimi S, Suzuki N, Inui M, Yukawa H. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;90:1721–9. doi:10.1007/s00253-011-3190-x.
Article
CAS
Google Scholar
Kinoshita S, Udaka S, Shimono M. Studies on the amino acid fermentation. J Gen Appl Microbiol. 1957;3:193–205. doi:10.2323/jgam.3.193.
Article
CAS
Google Scholar
Wendisch VF. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol. 2014;30C:51–8. doi:10.1016/j.copbio.2014.05.004.
Article
Google Scholar
Eggeling L, Bott M, editors. Handbook of Corynebacterium glutamicum. Boca Raton, Fla: Taylor & Franics; 2005.
Google Scholar
Mitsuhashi S. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotechnol. 2014;26:38–44. doi:10.1016/j.copbio.2013.08.020.
Article
CAS
Google Scholar
Becker J, Wittmann C. Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem. 2015;127:3383–407. doi:10.1002/ange.201409033.
Article
Google Scholar
Burkovski A. Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications. Portland: Caister Academic Press; 2015.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol. 2003;104:5–25. doi:10.1016/S0168-1656(03)00154-8.
Article
CAS
Google Scholar
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, et al. Chassis organism from Corynebacterium glutamicum - a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J. 2014. doi:10.1002/biot.201400041.
Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opin Biotechnol. 2012;23:718–26. doi:10.1016/j.copbio.2011.12.025.
Article
CAS
Google Scholar
Mimitsuka T, Sawai H, Hatsu M, Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem. 2007;71:2130–5. doi:10.1271/bbb.60699.
Article
CAS
Google Scholar
Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010;88:859–68. doi:10.1007/s00253-010-2778-x.
Article
CAS
Google Scholar
Wieschalka S, Blombach B, Bott M, Eikmanns BJ. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol. 2013;6:87–102. doi:10.1111/1751-7915.12013.
Article
Google Scholar
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Front Bioeng Biotechnol. 2014;2:28. doi:10.3389/fbioe.2014.00028.
Article
Google Scholar
Smith KM, Cho K, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol. 2010;87:1045–55. doi:10.1007/s00253-010-2522-6.
Article
CAS
Google Scholar
Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng. 2013;110:2938–48. doi:10.1002/bit.24961.
Article
CAS
Google Scholar
Blombach B, Riester T, Wieschalka S, Ziert C, Youn J, Wendisch VF, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77:3300–10. doi:10.1128/AEM.02972-10.
Article
CAS
Google Scholar
Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol. 2004;8:243–54. doi:10.1159/000086705.
Article
Google Scholar
Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, et al. Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol. 2007;73:2349–53. doi:10.1128/AEM.02880-06.
Article
CAS
Google Scholar
Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, et al. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99:1165–72. doi:10.1007/s00253-014-6223-4.
Article
CAS
Google Scholar
Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J. 2012;3:e201210004. doi:10.5936/csbj.201210004.
Google Scholar
Jain R, Yan Y. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact. 2011;10:97. doi:10.1186/1475-2859-10-97.
Article
CAS
Google Scholar
Ammar EM, Wang Z, Yang S. Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol. 2013;97:4677–90. doi:10.1007/s00253-013-4861-6.
Article
CAS
Google Scholar
Srirangan K, Liu X, Westbrook A, Akawi L, Pyne ME, Moo-Young M, et al. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Appl Microbiol Biotechnol. 2014;98:9499–515. doi:10.1007/s00253-014-6093-9.
Article
CAS
Google Scholar
Shen CR, Liao JC. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metab Eng. 2013;17:12–22. doi:10.1016/j.ymben.2013.01.008.
Article
CAS
Google Scholar
Choi YJ, Park JH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng. 2012;14:477–86. doi:10.1016/j.ymben.2012.07.006.
Article
Google Scholar
Lindner SN, Meiswinkel TM, Panhorst M, Youn J, Wiefel L, Wendisch VF. Glycerol-3-phosphatase of Corynebacterium glutamicum. J Biotechnol. 2012;159:216–24. doi:10.1016/j.jbiotec.2012.02.003.
Article
CAS
Google Scholar
Jojima T, Igari T, Moteki Y, Suda M, Yukawa H, Inui M. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl. Microbiol. Biotechnol. 2014. doi:10.1007/s00253-014-6170-0.
Subedi KP, Kim I, Kim J, Min B, Park C. Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol Lett. 2008;279:180–7. doi:10.1111/j.1574-6968.2007.01032.x.
Article
CAS
Google Scholar
Thomas Dr. Haas, Li Dr. Li, Achim Dr. Marx, Juraj Obuch, Volker F. Prof. Dr. Wendisch, inventors. Preparing dihydroxyacetone, useful e.g. in cosmetic composition, comprises cultivating microorganisms in growth medium, adjusting pH of the medium, contacting cells with a base and culturing the microorganism in presence of carbohydrates. 2008
Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett. 2012;586:4228–32. doi:10.1016/j.febslet.2012.10.028.
Article
CAS
Google Scholar
Pauling J, Röttger R, Tauch A, Azevedo V, Baumbach J. CoryneRegNet 6.0–Updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res. 2012;40:D610–4. doi:10.1093/nar/gkr883.
Article
CAS
Google Scholar
Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2005;68:475–80. doi:10.1007/s00253-005-1900-y.
Article
CAS
Google Scholar
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen J, Wendisch VF. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol. 2005;71:5920–8. doi:10.1128/AEM.71.10.5920-5928.2005.
Article
CAS
Google Scholar
Kato O, Youn J, Stansen KC, Matsui D, Oikawa T, Wendisch VF. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiol. 2010;10:321. doi:10.1186/1471-2180-10-321.
Article
CAS
Google Scholar
Jain R, Sun X, Yuan Q, Yan Y. Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth Biol. 2014. doi:10.1021/sb500345t.
Jarboe LR. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol. 2011;89:249–57. doi:10.1007/s00253-010-2912-9.
Article
CAS
Google Scholar
Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, et al. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact. 2014;13:64. doi:10.1186/1475-2859-13-64.
Article
Google Scholar
Feng X, Xian M, Liu W, Xu C, Zhang H, Zhao G. Biosynthesis of poly(3-hydroxypropionate) from glycerol using engineered Klebsiella pneumoniae strain without vitamin B12. Bioengineered. 2015. doi:10.1080/21655979.2015.1011027.
Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, et al. Improving microbial biogasoline production in Escherichia coli using tolerance engineering. MBio. 2014;5:e01932. doi:10.1128/mBio.01932-14.
Article
CAS
Google Scholar
Zhu H, Yi X, Liu Y, Hu H, Wood TK, Zhang X. Production of acetol from glycerol using engineered Escherichia coli. Bioresour Technol. 2013;149:238–43. doi:10.1016/j.biortech.2013.09.062.
Article
CAS
Google Scholar
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol. 2008;81:459–64. doi:10.1007/s00253-008-1668-y.
Article
CAS
Google Scholar
Okino S, Suda M, Fujikura K, Inui M, Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2008;78:449–54. doi:10.1007/s00253-007-1336-7.
Article
CAS
Google Scholar
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, et al. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol. 2004;182:354–63. doi:10.1007/s00203-004-0710-4.
Article
CAS
Google Scholar
Gubler M, Jetten M, Lee SH, Sinskey AJ. Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Appl Environ Microbiol. 1994;60:2494–500.
CAS
Google Scholar
Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO. Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett. 2006;28:1527–35. doi:10.1007/s10529-006-9122-7.
Article
CAS
Google Scholar
Vetting MW, Frantom PA, Blanchard JS. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J Biol Chem. 2008;283:15834–44. doi:10.1074/jbc.M801017200.
Article
CAS
Google Scholar
Lessmeier L, Hoefener M, Wendisch VF. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology. 2013;159:2651–62. doi:10.1099/mic.0.072413-0.
Article
CAS
Google Scholar
Witthoff S, Mühlroth A, Marienhagen J, Bott M. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide. Appl Environ Microbiol. 2013;79:6974–83. doi:10.1128/AEM.02705-13.
Article
CAS
Google Scholar
Liu Y, Chen C, Chaudhry MT, Si M, Zhang L, Wang Y, et al. Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase. Biotechnol Lett. 2014;36:1453–9. doi:10.1007/s10529-014-1501-x.
Article
CAS
Google Scholar
Shibata N, Masuda J, Morimoto Y, Yasuoka N, Toraya T. Substrate-induced conformational change of a coenzyme B 12 -dependent enzyme: crystal structure of the substrate-free form of diol dehydratase. Biochemistry. 2002;41:12607–17. doi:10.1021/bi026104z.
Article
CAS
Google Scholar
Tobimatsu T, Sakai T, Hashida Y, Mizoguchi N, Miyoshi S, Toraya T. Heterologous expression, purification, and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca. Arch Biochem Biophys. 1997;347:132–40. doi:10.1006/abbi.1997.0325.
Article
CAS
Google Scholar
Shibata N, Nakanishi Y, Fukuoka M, Yamanishi M, Yasuoka N, Toraya T. Structural rationalization for the lack of stereospecificity in coenzyme B12-dependent diol dehydratase. J Biol Chem. 2003;278:22717–25. doi:10.1074/jbc.M301513200.
Article
CAS
Google Scholar
Kabus A, Georgi T, Wendisch VF, Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol. 2007;75:47–53. doi:10.1007/s00253-006-0804-9.
Article
CAS
Google Scholar
Marx A, Hans S, Möckel B, Bathe B, De G, Albert A. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol. 2003;104:185–97. doi:10.1016/S0168-1656(03)00153-6.
Article
CAS
Google Scholar
Bommareddy RR, Chen Z, Rappert S, Zeng A. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng. 2014;25:30–7. doi:10.1016/j.ymben.2014.06.005.
Article
CAS
Google Scholar
Shi F, Huan X, Wang X, Ning J. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb Technol. 2012;51:73–80. doi:10.1016/j.enzmictec.2012.04.003.
Article
CAS
Google Scholar
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–80. doi:10.1016/S0022-2836(83)80284-8.
Article
CAS
Google Scholar
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Eggeling L, Reyes O. Experiments. In: Eggeling L, Bott M, editors. Handbook of Corynebacterium glutamicum. Boca Raton, Fla: Taylor & Franics; 2005. p. 535–68.
Chapter
Google Scholar
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke K, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology. 1994;140:1817–28. doi:10.1099/13500872-140-8-1817.
Article
CAS
Google Scholar
Gibson DG, Young L, Chuang R, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5. doi:10.1038/NMETH.1318.
Article
CAS
Google Scholar
Follettie MT, Peoples OP, Agoropoulou C, Sinskey AJ. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol. 1993;175:4096–103.
CAS
Google Scholar
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69–73. doi:10.1016/0378-1119(94)90324-7.
Article
Google Scholar
Abe S, Takayama K, Kinoshita S. Taxanomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol. 1967;13:279–301. doi:10.2323/jgam.13.279.
Article
Google Scholar
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, et al. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2001;3:295–300.
CAS
Google Scholar