Demain AL. Biosolutions to the energy problem. J Ind Microbiol Biotechnol. 2009;36(3):319–32. doi:10.1007/s10295-008-0521-8.
Article
CAS
Google Scholar
Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref. 2007;1(2):119–34. doi:10.1002/bbb.4.
Article
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28(12):1883–96. doi:10.1039/c1np00042j.
Article
CAS
Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506–77. doi:10.1128/mmbr.66.3.506-577.2002.
Article
CAS
Google Scholar
Pandey S, Singh S, Yadav AN, Nain L, Saxena AK. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem. 2013;77(7):1474–80. doi:10.1271/bbb.130121.
Article
CAS
Google Scholar
Woo HL, Hazen TC, Simmons BA, DeAngelis KM. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol. 2014;37(1):60–7. doi:10.1016/j.syapm.2013.10.001.
Article
CAS
Google Scholar
Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 2011;39(8):3240–54. doi:10.1093/nar/gkq1281.
Article
CAS
Google Scholar
Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, et al. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One. 2009;4(4):e5271. doi:10.1371/journal.pone.0005271.
Article
Google Scholar
Book AJ, Lewin GR, McDonald BR, Takasuka TE, Doering DT, Adams AS, et al. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol. 2014;80(15):4692–701. doi:10.1128/AEM.01133-14.
Article
Google Scholar
Chen S, Wilson DB. Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol. 2007;189(17):6260–5. doi:10.1128/JB.00584-07.
Article
CAS
Google Scholar
Adav SS, Ng CS, Arulmani M, Sze SK. Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res. 2010;9(6):3016–24. doi:10.1021/pr901174z.
Article
CAS
Google Scholar
Adav SS, Cheow ES, Ravindran A, Dutta B, Sze SK. Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass. J Proteomics. 2012;75(12):3694–706. doi:10.1016/j.jprot.2012.04.031.
Article
CAS
Google Scholar
Kataeva I, Foston MB, Yang S-J, Pattathil S, Biswal AK, Poole Ii FL, et al. Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci. 2013;6(7):2186. doi:10.1039/c3ee40932e.
Article
CAS
Google Scholar
Ventorino V, Aliberti A, Faraco V, Robertiello A, Giacobbe S, Ercolini D, et al. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep. 2015;5:8161. doi:10.1038/srep08161.
Article
CAS
Google Scholar
Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos. 1995;73:274–6. doi:10.2307/3545919.
Article
Google Scholar
Purahong W, Hyde KD. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers. 2010;47(1):1–7. doi:10.1007/s13225-010-0083-8.
Article
Google Scholar
Koide K, Osono T, Takeda H. Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience. 2005;46(5):280–6. doi:10.1007/S10267-005-0247-7.
Article
Google Scholar
Xiong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW, et al. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol. 2014;58(2):123–9. doi:10.1111/lam.12163.
Article
CAS
Google Scholar
Coutinho TA, Venter SN. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol. 2009;10(3):325–35. doi:10.1111/j.1364-3703.2009.00542.x.
Article
CAS
Google Scholar
Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, et al. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 2011;5(8):1323–31. doi:10.1038/ismej.2011.14.
Article
CAS
Google Scholar
De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK, Birch PR, et al. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genom. 2014;15:404. doi:10.1186/1471-2164-15-404.
Article
Google Scholar
Chandra R, Singh R. Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J. 2012;61:49–58. doi:10.1016/j.bej.2011.12.004.
Article
CAS
Google Scholar
Dastager S, Deepa CK, Pandey A. Isolation and characterization of high-strength phenol-degrading novel bacterium of the Pantoea genus. Bioremediat J. 2009;13(4):171–9. doi:10.1080/10889860903341420.
Article
CAS
Google Scholar
Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fukui S, et al. Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. J Bacteriol. 2012;194(2):534–5. doi:10.1128/JB.06254-11.
Article
CAS
Google Scholar
Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, et al. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol. 2013;4:280. doi:10.3389/fmicb.2013.00280.
Article
Google Scholar
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, et al. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels. 2013;6(1):149. doi:10.1186/1754-6834-6-149.
Article
CAS
Google Scholar
Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;35(5):377–91. doi:10.1007/s10295-008-0327-8.
Article
CAS
Google Scholar
Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA. 2009;106(6):1954–9. doi:10.1073/pnas.0809575106.
Article
CAS
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22(3):394–400. doi:10.1016/j.copbio.2010.10.009.
Article
CAS
Google Scholar
Brown ME, Chang MC. Exploring bacterial lignin degradation. Curr Opin Chem Biol. 2014;19:1–7. doi:10.1016/j.cbpa.2013.11.015.
Article
CAS
Google Scholar
Mathews SL, Pawlak J, Grunden AM. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl Microbiol Biotechnol. 2015;99(7):2939–54. doi:10.1007/s00253-015-6471-y.
Article
CAS
Google Scholar
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41. doi:10.1186/1754-6834-6-41.
Article
CAS
Google Scholar
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5(1):1–13. doi:10.1186/1754-6834-5-45.
Article
Google Scholar
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769–81. doi:10.1042/BJ20040892.
Article
CAS
Google Scholar
Stevenson DM, Weimer PJ. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl Environ Microbiol. 2005;71(8):4672–8. doi:10.1128/AEM.71.8.4672-4678.2005.
Article
CAS
Google Scholar
Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels. 2010;1(2):323–41. doi:10.4155/bfs.09.25.
Article
CAS
Google Scholar
Lochner A, Giannone RJ, Rodriguez M Jr, Shah MB, Mielenz JR, Keller M, et al. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol. 2011;77(12):4042–54. doi:10.1128/AEM.02811-10.
Article
CAS
Google Scholar
Sun J, Tian C, Diamond S, Glass NL. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell. 2012;11(4):482–93. doi:10.1128/EC.05327-11.
Article
CAS
Google Scholar
Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 2013;14:274. doi:10.1186/1471-2164-14-274.
Article
CAS
Google Scholar
Navarrete M, Callegari E, Eyzaguirre J. The effect of acetylated xylan and sugar beet pulp on the expression and secretion of enzymes by Penicillium purpurogenum. Appl Microbiol Biotechnol. 2012;93(2):723–41. doi:10.1007/s00253-011-3744-y.
Article
CAS
Google Scholar
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14(4):435–43. doi:10.1016/j.pbi.2011.04.004.
Article
Google Scholar
Tiwari R, Singh S, Nain PK, Rana S, Sharma A, Pranaw K, et al. Harnessing the hydrolytic potential of phytopathogenic fungus Phoma exigua ITCC 2049 for saccharification of lignocellulosic biomass. Bioresour Technol. 2013;150:228–34. doi:10.1016/j.biortech.2013.10.007.
Article
CAS
Google Scholar
Tiwari R, Singh S, Singh N, Adak A, Rana S, Sharma A, et al. Unwrapping the hydrolytic system of the phytopathogenic fungus Phoma exigua by secretome analysis. Process Biochem. 2014;49(10):1630–6. doi:10.1016/j.procbio.2014.06.023.
Article
CAS
Google Scholar
Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N. A bacterial enzyme degrading the model lignin compound β-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett. 1993;323(1):135–40. doi:10.1016/0014-5793(93)81465-C.
Article
CAS
Google Scholar
Masai E, Kubota S, Katayama Y, Kawai S, Yamasaki M, Morohoshi N. Characterization of the C alpha-dehydrogenase gene involved in the cleavage of beta-aryl ether by Pseudomonas paucimobilis. Biosci Biotechnol Biochem. 1993;57(10):1655–9. doi:10.1271/bbb.57.1655.
Article
CAS
Google Scholar
Colpa DI, Fraaije MW, van Bloois E. DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol. 2014;41(1):1–7. doi:10.1007/s10295-013-1371-6.
Article
CAS
Google Scholar
Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, et al. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry. 2014;53(24):4047–58. doi:10.1021/bi500285t.
Article
CAS
Google Scholar
Ihssen J, Reiss R, Luchsinger R, Thony-Meyer L, Richter M. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep. 2015;5:10465. doi:10.1038/srep10465.
Article
CAS
Google Scholar
Potumarthi R, Baadhe RR, Nayak P, Jetty A. Simultaneous pretreatment and saccharification of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour Technol. 2013;128:113–7. doi:10.1016/j.biortech.2012.10.030.
Article
CAS
Google Scholar
Jing D. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization. Bioresour Technol. 2010;101(19):7592–7. doi:10.1016/j.biortech.2010.04.087.
Article
CAS
Google Scholar
Shi X, Liu Q, Ma J, Liao H, Xiong X, Zhang K, et al. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett. 2015;37(11):2279–88. doi:10.1007/s10529-015-1914-1.
Article
CAS
Google Scholar
Zamocky M, Hallberg M, Ludwig R, Divne C, Haltrich D. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene. 2004;338(1):1–14. doi:10.1016/j.gene.2004.04.025.
Article
CAS
Google Scholar
Prongjit M, Sucharitakul J, Palfey BA, Chaiyen P. Oxidation mode of pyranose 2-oxidase is controlled by pH. Biochemistry. 2013;52(8):1437–45. doi:10.1021/bi301442x.
Article
CAS
Google Scholar
Baldrian P, Valaskova V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 2008;32(3):501–21. doi:10.1111/j.1574-6976.2008.00106.x.
Article
CAS
Google Scholar
Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257–68. doi:10.1351/pac198759020257.
Article
CAS
Google Scholar
Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992;23(3):257–70. doi:10.1016/0168-1656(92)90074-J.
Article
CAS
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–8. doi:10.1021/ac60147a030.
Article
CAS
Google Scholar
Perry JD, Morris KA, James AL, Oliver M, Gould FK. Evaluation of novel chromogenic substrates for the detection of bacterial beta-glucosidase. J Appl Microbiol. 2007;102(2):410–5. doi:10.1111/j.1365-2672.2006.03096.x.
Article
CAS
Google Scholar
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, et al. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels. 2013;6(1):1. doi:10.1186/1754-6834-6-1.
Article
CAS
Google Scholar
Nakagawa Y, Sakamoto Y, Kikuchi S, Sato T, Yano A. A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases. Microbiol Res. 2010;165(5):392–401. doi:10.1016/j.micres.2009.08.006.
Article
CAS
Google Scholar
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(Web Server issue):W445–51. doi:10.1093/nar/gks479.
Article
CAS
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490–5. doi:10.1093/nar/gkt1178.
Article
CAS
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6. doi:10.1038/nmeth.1701.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.
Article
CAS
Google Scholar
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–60. doi:10.1038/nprot.2006.468.
Article
CAS
Google Scholar