Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31(4):233–9.
Article
CAS
Google Scholar
Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC. Solutions for a cultivated planet. Nature. 2011;478(7369):337–42.
Article
CAS
Google Scholar
Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science. 2010;329(5993):796–9.
Article
CAS
Google Scholar
Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels-a process view. J Biotechnol. 2009;142(1):64–9.
Article
CAS
Google Scholar
Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26(3):126–31.
Article
CAS
Google Scholar
Garzon-Sanabria AJ, Davis RT, Nikolov ZL. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour Technol. 2012;118:418–24.
Article
CAS
Google Scholar
Ndikubwimana T, Zeng X, Liu Y, Chang JS, Lu Y. Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res. 2014;6:186–93.
Article
Google Scholar
Cui Y, Yuan W, Cheng J. Understanding pH and ionic strength effects on aluminum sulfate-induced microalgae flocculation. Appl Biochem Biotechnol. 2014;173(7):1692–702.
Article
CAS
Google Scholar
Spilling K, Seppälä J, Tamminen T. Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Phycol. 2011;23(6):959–66.
Article
CAS
Google Scholar
Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, Sang M, Zhang C. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels. 2013;6(1):1–11.
Article
Google Scholar
Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energ. 2010;2(1):012701–15.
Article
Google Scholar
Manheim D, Nelson Y. Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Progr Sust Energ. 2013;32(4):946–54.
Article
CAS
Google Scholar
Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, Kwon GS, Yoon BD. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett. 2001;23(15):1229–34.
Article
CAS
Google Scholar
Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29(6):686–702.
Article
CAS
Google Scholar
Salim S, Kosterink N, Wacka NT, Vermuë M, Wijffels R. Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J Biotechnol. 2014;174:34–8.
Article
CAS
Google Scholar
Zhang J, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–35.
Article
CAS
Google Scholar
Xie S, Sun S, Dai SY, Yuan JS. Efficient coagulation of microalgae in cultures with filamentous fungi. Algal Res. 2013;2(1):28–33.
Article
Google Scholar
Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol. 2012;112:212–20.
Article
CAS
Google Scholar
Ndikubwimana T, Zeng X, He N, Xiao Z, Xie Y, Chang JS, Lin L, Lu Y. Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. BiochemEng J. 2015;101:160–7.
CAS
Google Scholar
Jang M, Lee HJ, Shim Y. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation. Environ Technol. 2010;31(4):423–32.
Article
CAS
Google Scholar
Laurens LM, Dempster TA, Jones HD, Wolfrum EJ, Van Wychen S, McAllister JS, Rencenberger M, Parchert KJ, Gloe LM. Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem. 2012;84(4):1879–87.
Article
CAS
Google Scholar
Laurens LM, Quinn M, Van Wychen S, Templeton DW, Wolfrum EJ. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem. 2012;403(1):167–78.
Article
CAS
Google Scholar
Iverson SJ, Lang SL, Cooper MH. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids. 2001;36(11):1283–7.
Article
CAS
Google Scholar
Templeton DW, Quinn M, Van Wychen S, Hyman D, Laurens LM. Separation and quantification of microalgal carbohydrates. J Chromatogr A. 2012;1270:225–34.
Article
CAS
Google Scholar
Axelsson M, Gentili F. A single-step method for rapid extraction of total lipids from green microalgae. PLoS One. 2014;9(2):e89643. doi:10.1371/journal.pone.0089643.
Article
Google Scholar
Li Y, Naghdi FG, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact. 2014;13(14):1–9.
CAS
Google Scholar
Coward T, Lee JG, Caldwell GS. Development of a foam flotation system for harvesting microalgae biomass. Algal Res. 2013;2(2):135–44.
Article
Google Scholar
Knuckey RM, Brown MR, Robert R, Frampton DM. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacul Eng. 2006;35(3):300–13.
Article
Google Scholar
Rawat I, Kumar RR, Mutanda T, Bux F. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energ. 2013;103:444–67.
Article
CAS
Google Scholar
Wyatt NB, Gloe LM, Brady PV, Hewson JC, Grillet AM, Hankins MG, Pohl PI. Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng. 2012;109(2):493–501.
Article
CAS
Google Scholar
Chen JJ, Yeh HH. The mechanisms of potassium permanganate on algae removal. Water Res. 2005;39(18):4420–8.
Article
CAS
Google Scholar
Henderson R, Parsons SA, Jefferson B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008;42(8):1827–45.
Article
CAS
Google Scholar
Vandamme D, Foubert I, Meesschaert B, Muylaert K. Flocculation of microalgae using cationic starch. J Phycol. 2010;22(4):525–30.
Article
Google Scholar
Weschler MK, Barr WJ, Harper WF, Landis AE. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock. Bioresour Technol. 2014;153:108–15.
Article
CAS
Google Scholar
de Carvalho Neto RG, do Nascimento JGdS, Costa MC, Lopes AC, Neto EFA, Mota Filho CR, Dos Santos AB. Microalgae harvesting and cell disruption: a preliminary evaluation of the technology electroflotation by alternating current. Water Sci Technol. 2014. doi:10.2166/wst.2014.220.
Google Scholar
Lee AK, Lewis DM, Ashman PJ. Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res Des. 2010;88(8):988–96.
Article
CAS
Google Scholar
Huntley ME, Johnson ZI, Brown SL, Sills DL, Gerber L, Archibald I, Machesky SC, Granados J, Beal C, Greene CH. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res. 2015;10:249–65.
Article
Google Scholar
Selesu NF, de Oliveira TV, Corrêa DO, Miyawaki B, Mariano AB, Vargas JV, Vieira RB. Maximum microalgae biomass harvesting via flocculation in large scale photobioreactor cultivation. Can J Chem Eng. 2015. doi:10.1002/cjce.22391.
Google Scholar
Barrut B, Blancheton J-P, Muller-Feuga A, René F, Narváez C, Champagne JY, Grasmick A. Separation efficiency of a vacuum gas lift for microalgae harvesting. Bioresour Technol. 2013;128:235–40.
Article
CAS
Google Scholar
Pfeiffer TJ, Rusch KA. An integrated system for microalgal and nursery seed clam culture. Aquacul Eng. 2000;24(1):15–31.
Article
Google Scholar
Csordas A, Wang JK. An integrated photobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacul Eng. 2004;30(1):15–30.
Article
Google Scholar
Cadoret J-P, Bernard O. La production de biocarburant lipidique avec des microalgues: promesses et défis. J Soc Biol. 2008;202(3):201–11.
Article
CAS
Google Scholar
Borowitzka MA. Marine and halophilic algae for the production of biofuels. J Biotechnol. 2008;136:S7.
Article
Google Scholar
Andrew Lee K, David Lewis M, Ashman PJ. Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics. Appl Energ. 2013;108:45–53.
Article
Google Scholar
Uduman N, Bourniquel V, Danquah MK, Hoadley AF. A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J. 2011;174(1):249–57.
Article
CAS
Google Scholar
Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng. 2011;108(10):2320–9.
Article
CAS
Google Scholar
Granados M, Acien F, Gomez C, Fernández-Sevilla J, Molina Grima E. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol. 2012;118:102–10.
Article
CAS
Google Scholar
Berges JA, Franklin DJ, Harrison PJ. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J Phycol. 2001;37(6):1138–45.
Article
Google Scholar
Xiong Y, Wang Y, Yu Y, Li Q, Wang H, Chen R, He N. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl Environ Microbiol. 2010;76(9):2778–82.
Article
CAS
Google Scholar
Albalasmeh AA, Berhe AA, Ghezzehei TA. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohyd Polym. 2013;97(2):253–61.
Article
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–54.
Article
CAS
Google Scholar
Kruger NJ. The Bradford method for protein quantitation. In: The protein protocols handbook. Springer; 2009. p. 17–24.
He F. Bradford protein assay. Bio-protocol Bio101: e45 2011.
Coward T, Lee JG, Caldwell GS. Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics. Biomass Bioenerg. 2014;67:354–62.
Article
CAS
Google Scholar
Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20(7):491–515.
Article
Google Scholar
Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM. Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biot. 2009;84(7):1078–83.
Article
CAS
Google Scholar