Shih IL, Van YT. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour Technol. 2001;79:207–25.
Article
CAS
Google Scholar
Sanda F, Fujiyama T, Endo T. Chemical synthesis of poly-gamma-glutamic acid by polycondensation of gamma-glutamic acid dimer: synthesis and reaction of poly-gamma-glutamic acid methyl ester. J Polym Sci Polym Chem. 2001;39:732–41.
Article
CAS
Google Scholar
Candela T, Moya M, Haustant M, Fouet A. Fusobacterium nucleatum, the first gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol. 2009;55:627–32.
Article
CAS
Google Scholar
Hezayen FF, Rehm BH, Tindall BJ, Steinbuchel A. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol. 2001;51:1133–42.
Article
CAS
Google Scholar
Akagi T, Baba M, Akashi M. Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer. 2007;48:6729–47.
Article
CAS
Google Scholar
Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Mol Microbiol. 2006;60:1091–8.
Article
CAS
Google Scholar
Ogunleye A, et al. Poly-γ-glutamic acid: production, properties and applications. Microbiology. 2015;161:1–17.
Article
CAS
Google Scholar
Buescher JM, Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol. 2007;27:1–19.
Article
CAS
Google Scholar
Bajaj I, Singhal R. Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresour Technol. 2011;102:5551–61.
Article
CAS
Google Scholar
Ho GH, et al. γ-Polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities. J Chin Chem Soc. 2006;53:1363–84.
Article
CAS
Google Scholar
Bhat AR, et al. Bacillus subtilis natto: a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express. 2013;3:36.
Article
CAS
Google Scholar
Shih IL, Van YT, Sau YY. Antifreeze activities of poly(gamma-glutamic acid) produced by Bacillus licheniformis. Biotechnol Lett. 2003;25:1709–12.
Article
CAS
Google Scholar
Perez-Camero G, Congregado F, Bou JJ, Munoz-Guerra S. Biosynthesis and ultrasonic degradation of bacterial poly(gamma-glutamic acid). Biotechnol Bioeng. 1999;63:110–5.
Article
CAS
Google Scholar
Mesnage S, Tosi-Couture E, Gounon P, Mock M, Fouet A. The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis. J Bacteriol. 1998;180:52–8.
CAS
Google Scholar
Kocianova S, et al. Key role of poly-gamma-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest. 2005;115:688–94.
Article
CAS
Google Scholar
McLean RJ, Beauchemin D, Clapham L, Beveridge TJ. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol. 1990;56:3671–7.
CAS
Google Scholar
Yan S, et al. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry. Biotechnol Prog. 2015;31:1287–94.
Article
CAS
Google Scholar
Ko YH, Gross RA. Effects of glucose and glycerol on gamma-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng. 1998;57:430–7.
Article
CAS
Google Scholar
Wu Q, Xu H, Xu L, Ouyang P. Biosynthesis of poly(gamma-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly(gamma-glutamic acid). Process Biochem. 2006;41:1650–5.
Article
CAS
Google Scholar
Ashiuchi M, et al. Enzymatic synthesis of high-molecular-mass poly-gamma-glutamate and regulation of its stereochemistry. Appl Environ Microbiol. 2004;70:4249–55.
Article
CAS
Google Scholar
Ashiuchi M, Soda K, Misono H. Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme. Biosci Biotech Biochem. 1999;63:792–8.
Article
CAS
Google Scholar
Kimura K, Tran LSP, Uchida I, Itoh Y. Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology. 2004;150:4115–23.
Article
CAS
Google Scholar
Ashiuchi M, Kuwana E, Komatsu K, Soda K, Misono H. Differences in effects on DNA gyrase activity between two glutamate racemases of Bacillus subtilis, the poly-gamma-glutamate synthesis-linking Glr enzyme and the YrpC (MurI) isozyme. FEMS Microbiol Lett. 2003;223:221–5.
Article
CAS
Google Scholar
Ashiuchi M, et al. Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence. Appl Microbiol Biotechnol. 2001;57:764–9.
Article
CAS
Google Scholar
Sung MH, et al. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec. 2005;5:352–66.
Article
CAS
Google Scholar
Candela T, Fouet A. Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol. 2005;57:717–26.
Article
CAS
Google Scholar
Yamashiro D, Yoshioka M, Ashiuchi M. Bacillus subtilis pgsE (formerly ywtC) stimulates poly-γ-glutamate production in the presence of Zinc. Biotechnol Bioeng. 2011;108:226–30.
Article
CAS
Google Scholar
Tran LSP, Nagai T, Itoh Y. Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol. 2000;37:1159–71.
Article
CAS
Google Scholar
Do TH, et al. Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis. Appl Environ Microbiol. 2011;77:8249–58.
Article
CAS
Google Scholar
Osera C, Amati G, Calvio C, Galizzi A. SwrAA activates poly-gamma-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology. 2009;155:2282–7.
Article
CAS
Google Scholar
Ohsawa T, Tsukahara K, Ogura M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Biosci Biotechnol Biochem. 2009;73:2096–102.
Article
CAS
Google Scholar
Stanley NR, Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol Microbiol. 2005;57:1143–58.
Article
CAS
Google Scholar
Obst M, Steinbuchel A. Microbial degradation of poly(amino acid)s. Biomacromolecules. 2004;5:1166–76.
Article
CAS
Google Scholar
King EC, Blacker AJ, Bugg TDH. Enzymatic breakdown of poly-gamma-d-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl gamma-hydrolase enzyme. Biomacromolecules. 2000;1:75–83.
Article
CAS
Google Scholar
Yao J, et al. Investigation on enzymatic degradation of γ-polyglutamic acid from Bacillus subtilis NX-2. J Mol Catal B Enzym. 2009;56:158–64.
Article
CAS
Google Scholar
Ashiuchi M, Kamei T, Misono H. Poly-gamma-glutamate synthetase of Bacillus subtilis. J Mol Catal B Enzym. 2003;23:101–6.
Article
CAS
Google Scholar
Xu K, Strauch MA. Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis. J Bacteriol. 1996;178:4319–22.
CAS
Google Scholar
Candela T, et al. N-acetylglucosamine deacetylases modulate the anchoring of the gamma-glutamyl capsule to the cell wall of Bacillus anthracis. Microb Drug Resist. 2014;20:222–30.
Article
CAS
Google Scholar
Morelli CF, Calvio C, Biagiotti M, Speranza G. pH-dependent hydrolase, glutaminase, transpeptidase and autotranspeptidase activities of Bacillus subtilis γ-glutamyltransferase. FEBS J. 2014;281:232–45.
Article
CAS
Google Scholar
Uchida I, et al. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol. 1993;9:487–96.
Article
CAS
Google Scholar
Tahara Y. In: United States Patent Application. 2003.
Xu ZQ, et al. Enhanced poly(γ-glutamic acid) fermentation by Bacillus subtilis NX-2 immobilized in an aerobic plant fibrous-bed bioreactor. Bioresour Technol. 2014;155:8–14.
Article
CAS
Google Scholar
Zhao CF, et al. Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties. Appl Biochem Biotechnol. 2013;170:562–72.
Article
CAS
Google Scholar
Shih IL, Wu PJ, Shieh CJ. Microbial production of a poly (gamma-glutamic acid) derivative by Bacillus subtilis. Process Biochem. 2005;40:2827–32.
Article
CAS
Google Scholar
Cao MF, et al. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol. 2011;102:4251–7.
Article
CAS
Google Scholar
Feng J, et al. Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction. Microb Biotechnol. 2014;7:446–55.
Article
CAS
Google Scholar
Ashiuchi M, Shimanouchi K, Horiuchi T, Kame T, Misono H. Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214. Biosci Biotechnol Biochem. 2006;70:1794–7.
Article
CAS
Google Scholar
Cao MF, et al. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Microb Biotechnol. 2013;6:675–84.
CAS
Google Scholar
Huang J, et al. High yield and cost-effective production of poly(gamma-glutamic acid) with Bacillus subtilis. Eng Life Sci. 2011;11:291–7.
Article
CAS
Google Scholar
Tang B, et al. Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2. Bioresour Technol. 2015;193:370–6.
Article
CAS
Google Scholar
Peng YY, et al. High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochem. 2015;50:329–35.
Article
CAS
Google Scholar
Cachat E, Barker M, Read TD, Priest FG. A Bacillus thuringiensis strain producing a polyglutamate capsule resembling that of Bacillus anthracis. FEMS Microbiol Lett. 2008;285:220–6.
Article
CAS
Google Scholar
Ezzell JW, et al. Association of Bacillus anthracis capsule with lethal toxin during experimental infection. Infect Immun. 2009;77:749–55.
Article
CAS
Google Scholar
Yao W, Meng G, Zhang W, Chen X, Yin R. Vol CN103146630 (A), China. 2013.
Zhang D, Feng XH, Zhou Z, Zhang Y, Xu H. Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Bioresour Technol. 2012;114:583–8.
Article
CAS
Google Scholar
Ju WT, Song YS, Jung WJ, Park RD. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis. Biotechnol Lett. 2014;36:2319–24.
Article
CAS
Google Scholar
Ji XJ, et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose–xylose mixtures. Appl Microbiol Biotechnol. 2011;89:1119–25.
Article
CAS
Google Scholar
Cromwick AM, Birrer GA, Gross RA. Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng. 1996;50:222–7.
Article
CAS
Google Scholar
Zhang D, Feng XH, Li S, Chen F, Xu H. Effects of oxygen vectors on the synthesis and molecular weight of poly(gamma-glutamic acid) and the metabolic characterization of Bacillus subtilis NX-2. Process Biochem. 2012;47:2103–9.
Article
CAS
Google Scholar
Xu H, Jiang M, Li H, Lu DQ, Ouyang P. Efficient production of poly(gamma-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem. 2005;40:519–23.
Article
CAS
Google Scholar
Richard A, Margaritis A. Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett. 2003;25:465–8.
Article
CAS
Google Scholar
Wu Q, Xu H, Ying HJ, Ouyang PK. Kinetic analysis and pH-shift control strategy for poly(gamma-glutamic acid) production with Bacillus subtilis CGMCC 0833. Biochem Eng J. 2010;50:24–8.
Article
CAS
Google Scholar
Xu Z, Shi F, Cen P. Production of polyglutamic acid from mixed glucose and sucrose by co-cultivation of Bacillus subtilis and Corynebacterium glutamicum. In: The 2005 AIChE annual meeting, Cincinnati. 2005. https://aiche.confex.com/aiche/2005/techprogram/P25321.HTM. Accessed 24 June 2016.
Do JH, Chang HN, Lee SY. Efficient recovery of gamma-poly (glutamic acid) from highly viscous culture broth. Biotechnol Bioeng. 2001;76:219–23.
Article
CAS
Google Scholar
Park C, et al. Synthesis of super-high-molecular-weight poly-gamma-glutamic acid by Bacillus subtilis subsp chungkookjang. J Mol Catal B Enzym. 2005;35:128–33.
Article
CAS
Google Scholar
Yoon SH, Do JH, Lee SY, Chang HN. Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol Lett. 2000;22:585–8.
Article
CAS
Google Scholar
Siaterlis A, Deepika G, Charalampopoulos D. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett Appl Microbiol. 2009;48:295–301.
Article
CAS
Google Scholar
Tanimoto H, et al. Acute effect of poly-gamma-glutamic acid on calcium absorption in post-menopausal women. J Am Coll Nutr. 2007;26:645–9.
Article
CAS
Google Scholar
Singer JW. Paclitaxel poliglumex (XYOTAX (TM), CT-2103): a macromolecular taxane. J Control Release. 2005;109:120–6.
Article
CAS
Google Scholar
Bajaj IB, Singhal RS. Flocculation properties of poly(gamma-glutamic acid) produced from Bacillus subtilis isolate. Food Bioprocess Tech. 2011;4:745–52.
Article
CAS
Google Scholar
Inbaraj BS, Chiu CP, Ho GH, Yang J, Chen BH. Removal of cationic dyes from aqueous solution using an anionic poly-gamma-glutamic acid-based adsorbent. J Hazard Mater. 2006;137:226–34.
Article
CAS
Google Scholar
Ben-Zur N, Goldman DM. γ-Poly glutamic acid: a novel peptide for skin care. Cosmet Toilet. 2007;122:65–74.
CAS
Google Scholar
Ashiuchi M, Misono H. Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl Microbiol Biotechnol. 2002;59:9–14.
Article
CAS
Google Scholar
Zeng W, et al. An integrated high-throughput strategy for rapid screening of poly(gamma-glutamic acid)-producing bacteria. Appl Microbiol Biotechnol. 2013;97:2163–72.
Article
CAS
Google Scholar
Jiang F, et al. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-gamma-glutamic acid. Biotechnol Lett. 2011;33:1837–40.
Article
CAS
Google Scholar
Jiang H, Shang L, Yoon SH, Lee SY, Yu Z. Optimal production of poly-gamma-glutamic acid by metabolically engineered Escherichia coli. Biotechnol Lett. 2006;28:1241–6.
Article
CAS
Google Scholar
Ashiuchi M. Microbial production and chemical transformation of poly-γ-glutamate. Microb Biotechnol. 2013;6:664–74.
CAS
Google Scholar
Wei XT, Tian GM, Ji ZX, Chen SW. A new strategy for enhancement of poly-gamma-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. J Chem Technol Biotechnol. 2015;90:709–13.
Article
CAS
Google Scholar
Peng Y, Zhang T, Mu W, Miao M, Jiang B. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain. J Sci Food Agric. 2016;96:66–72.
Article
CAS
Google Scholar
Zhu F, et al. The main byproducts and metabolic flux profiling of gamma-PGA-producing strain B. subtilis ZJU-7 under different pH values. J Biotechnol. 2013;164:67–74.
Article
CAS
Google Scholar
Bajaj IB, Singhal RS. Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl Biochem Biotechnol. 2009;159:133–41.
Article
CAS
Google Scholar
Zhu F, et al. A novel approach for poly-gamma-glutamic acid production using xylose and corncob fibres hydrolysate in Bacillus subtillis HB-1. J Chem Technol Biotechnol. 2014;89:616–22.
Article
CAS
Google Scholar
Kongklom N, et al. Production of poly-gamma-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochem Eng J. 2015;100:67–75.
Article
CAS
Google Scholar
Feng J, et al. Functions of poly-gamma-glutamic acid (gamma-PGA) degradation genes in gamma-PGA synthesis and cell morphology maintenance. Appl Microbiol Biotechnol. 2014;98:6397–407.
Article
CAS
Google Scholar
Zhang W, et al. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in Bacillus amyloliquefaciens LL3. J Ind Microbiol Biotechnol. 2015;42:297–305.
Article
CAS
Google Scholar
Feng J, et al. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab Eng. 2015;32:106–15.
Article
CAS
Google Scholar
Scoffone V, et al. Knockout of pgdS and ggt genes improves gamma-PGA yield in B. subtilis. Biotechnol Bioeng. 2013;110:2006–12.
Article
CAS
Google Scholar
Tian G, et al. Enhanced expression of pgdS gene for high production of poly-γ-glutamic acid with lower molecular weight in Bacillus licheniformis WX-02. J Chem Technol Biotechnol. 2014;89:1825–32.
Article
CAS
Google Scholar
Bajaj IB, Lele SS, Singhal RS. A statistical approach to optimization of fermentative production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour Technol. 2009;100:826–32.
Article
CAS
Google Scholar
Zhang D, et al. Improvement of poly(gamma-glutamic acid) biosynthesis and quantitative metabolic flux analysis of a two-stage strategy for agitation speed control in the culture of Bacillus subtilis NX-2. Biotechnol Bioprocess Eng. 2011;16:1144–51.
Article
CAS
Google Scholar
de Cesaro A, da Silva SB, Ayub MAZ. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53. J Ind Microbiol Biotechnol. 2014;41:1375–82.
Article
CAS
Google Scholar
Zhang H, et al. High-level exogenous glutamic acid-independent production of poly-(gamma-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresour Technol. 2012;116:241–6.
Article
CAS
Google Scholar
Zeng W, et al. Non-sterilized fermentative co-production of poly(gamma-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28. Bioresour Technol. 2013;142:697–700.
Article
CAS
Google Scholar
Yong XY, et al. Optimization of the production of poly-gamma-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. Bioresour Technol. 2011;102:7548–54.
Article
CAS
Google Scholar
Zeng W, et al. Regulation of poly-γ-glutamic acid production in Bacillus subtilis GXA-28 by potassium. J Taiwan Inst Chem Engineers. 2016;61:83–9.
Article
CAS
Google Scholar
Wang J, Yuan H, Wei X, Chen J, Chen S. Enhancement of poly-γ-glutamic acid production by alkaline pH stress treatment in Bacillus licheniformis WX-02. J Chem Technol Biotechnol. n/a–n/a. 2015.
Tang B. et al. Enhanced poly(γ-glutamic acid) production by H2O2-induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2. Biotechnol Appl Biochem. n/a–n/a. 2015.
Shyu YS, Sung WC. Improving the emulsion stability of sponge cake by the addition of gamma-polyglutamic acid. J Mar Sci Technol. 2010;18:895–900.
Google Scholar
Lim SM, et al. Effect of poly-gamma-glutamic acids (pga) on oil uptake and sensory quality in doughnuts. Food Sci Biotechnol. 2012;21:247–52.
Article
CAS
Google Scholar
Inbaraj BS, Chen BH. In vitro removal of toxic heavy metals by poly(gamma-glutamic acid)-coated superparamagnetic nanoparticles. Int J Nanomedicine. 2012;7:4419–32.
CAS
Google Scholar
Ye HF, et al. Poly(gamma, l-glutamic acid)-cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials. 2006;27:5958–65.
Article
CAS
Google Scholar
Kurosaki T, et al. Ternary complexes of pDNA, polyethylenimine, and gamma-polyglutamic acid for gene delivery systems. Biomaterials. 2009;30:2846–53.
Article
CAS
Google Scholar
Tsao CT, et al. Evaluation of chitosan/gamma-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym. 2011;84:812–9.
Article
CAS
Google Scholar
Otani Y, Tabata Y, Ikada Y. Sealing effect of rapidly curable gelatin-poly (l-glutamic acid) hydrogel glue on lung air leak. Ann Thorac Surg. 1999;67:922–6.
Article
CAS
Google Scholar
Bhattacharyya D, et al. Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. J Membr Sci. 1998;141:121–35.
Article
CAS
Google Scholar
Wang QJ, et al. Co-producing lipopeptides and poly-gamma-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresour Technol. 2008;99:3318–23.
Article
CAS
Google Scholar
Inbaraj BS, et al. The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. Nanotechnology. 2011;22:075101.
Article
CAS
Google Scholar
Khalil I, et al. Poly-γ-glutamic acid: biodegradable polymer for potential protection of beneficial viruses. Materials. 2016;9:28.
Article
Google Scholar