EPA. Clean Air Act. US Environmental Protection Agency. http://www3.epa.gov/climatechange/EPAactivities/regulatory-initiatives.html. 2015.
Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils. Lipid Technol. 2008;20(7):155–60.
Article
Google Scholar
Khanna M, Crago CL, Black M. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus. 2011;1(2):233–47.
Article
Google Scholar
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463(7280):559–62.
Article
CAS
Google Scholar
Davis R, Tao L, Tan E, Biddy M, Beckham G, Scarlata C et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid prehydrolysis and enzymatic hydrolysis deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. Technical report NREL/TP-5100-60222013.
Li Y, Zhao ZK, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol. 2007;41(3):312–7.
Article
Google Scholar
Zhao X, Hu C, Wu S, Shen H, Zhao ZK. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol. 2011;38(5):627–32.
Article
CAS
Google Scholar
Wiebe MG, Koivuranta K, Penttilä M, Ruohonen L. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol. 2012;12(1):26.
Article
CAS
Google Scholar
Zhao X, Wu S, Hu C, Wang Q, Hua Y, Zhao ZK. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol. 2010;37(6):581–5.
Article
CAS
Google Scholar
Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR et al. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng. 2016. doi:10.1002/bit.25928.
OECD-FAO. 2015–2024 OECD-FAO agricultural outlook. Paris: OECD; 2015.
Book
Google Scholar
Fei Q, Chang HN, Shang L, Kim N, Kang J. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol. 2011;102(3):2695–701.
Article
CAS
Google Scholar
Fei Q, Chang HN, Shang L, Choi J-D-R. Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng. 2011;16(3):482–7.
Article
CAS
Google Scholar
Ryu B-G, Kim J, Kim K, Choi Y-E, Han J-I, Yang J-W. High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresour Technol. 2013;135:357–64.
Article
CAS
Google Scholar
Seo YH, Lee IG, Han JI. Cultivation and lipid production of yeast Cryptococcus curvatus using pretreated waste active sludge supernatant. Bioresour Technol. 2013;135:304–8.
Article
CAS
Google Scholar
Meesters P, Huijberts G, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol. 1996;45(5):575–9.
Article
CAS
Google Scholar
Rakicka M, Lazar Z, Dulermo T, Fickers P, Nicaud JM. Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuels. 2015;8:104.
Article
Google Scholar
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–61.
Article
CAS
Google Scholar
Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270–95.
Article
CAS
Google Scholar
Humbird D, Mohagheghi A, Dowe N, Schell DJ. Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Prog. 2010;26(5):1245–51.
Article
CAS
Google Scholar
Chen X, Tao L, Shekiro J, Mohaghaghi A, Decker S, Wang W, et al. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1) Experimental. Biotechnol Biofuels. 2012;5(1):60.
Article
CAS
Google Scholar
Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, et al. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover: Technical report NREL/TP-5100-477642011.
Crago CL, Khanna M, Barton J, Giuliani E, Amaral W. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy. 2010;38(11):7404–15.
Article
Google Scholar
Chang Y-H, Chang K-S, Lee C-F, Hsu C-L, Huang C-W, Jang H-D. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy. 2015;72:95–103.
Article
CAS
Google Scholar
Kurosawa K, Wewetzer SJ, Sinskey AJ. Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J Microb Biochem Technol. 2014;6(5):254–9.
Article
CAS
Google Scholar
Huang C, Wu H, Li R-F, Zong M-H. Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol. 2012;29(3):372–8.
Article
CAS
Google Scholar
X-f Chen, Huang C, Xiong L, Ma L-L. Microbial oil production from corncob acid hydrolysate by Trichosporon cutaneum. Biotechnol Lett. 2012;34(6):1025–8.
Article
Google Scholar
Rs M. Physiology of lipid accumulation yeast. Single cell oil. London: Longman; 1988.
Google Scholar
Liang Y, Cui Y, Trushenski J, Blackburn JW. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol. 2010;101(19):7581–6.
Article
CAS
Google Scholar
Hassan M, Blanc PJ, Granger L-M, Pareilleux A, Goma G. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem. 1996;31(4):355–61.
Article
CAS
Google Scholar
Fei Q, Wewetzer SJ, Kurosawa K, Rha C, Sinskey AJ. High-cell-density cultivation of an engineered Rhodococcus opacus strain for lipid production via co-fermentation of glucose and xylose. Process Biochem. 2015;50(4):500–6.
Article
CAS
Google Scholar
Shang L, Jiang M, Chang HN. Poly (3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol Lett. 2003;25(17):1415–9.
Article
CAS
Google Scholar
Salehmin M, Annuar M, Chisti Y. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer. Bioprocess Biosyst Eng. 2013;36(11):1527–43.
Article
CAS
Google Scholar
Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI. Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng. 1994;43(9):892–8.
Article
CAS
Google Scholar
Ding S, Tan T. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem. 2006;41(6):1451–4.
Article
CAS
Google Scholar
Huang W-D, Zhang Y-HP. Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation. Energy Environ Sci. 2011;4(3):784–92.
Article
CAS
Google Scholar
Kitcha S, Cheirsilp B. Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy. Bioenergy Res. 2013;6(1):300–10.
Article
CAS
Google Scholar
Doelle HW, Kirk L, Crittenden R, Toh H, Doelle MB. Zymomonas mobilis—science and industrial application. Crit Rev Biotechnol. 1993;13(1):57–98.
Article
CAS
Google Scholar
Schell DJ, Dowe N, Chapeaux A, Nelson RS, Jennings EW. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass. Bioresour Technol. 2016.
Kim BS, Lee SC, Lee SY, Chang YK, Chang HN. High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess Biosyst Eng. 2004;26(3):147–50.
Article
CAS
Google Scholar
Johnson A. The control of fed-batch fermentation processes—a survey. Automatica. 1987;23(6):691–705.
Article
Google Scholar
Anschau A, Xavier MC, Hernalsteens S, Franco TT. Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol. 2014;157:214–22.
Article
CAS
Google Scholar
Zhao X, Kong X, Hua Y, Feng B, Zhao ZK. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol. 2008;110(5):405–12.
Article
CAS
Google Scholar
Tsakona S, Skiadaresis AG, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, et al. Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chem. 2016;198:85–92.
Article
CAS
Google Scholar
Wang Q, Guo F-J, Rong Y-J, Chi Z-M. Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides 21167 for biodiesel making. Renew Energy. 2012;46:164–8.
Article
CAS
Google Scholar
Wu S, Zhao X, Shen H, Wang Q, Zhao ZK. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol. 2011;102(2):1803–7.
Article
CAS
Google Scholar
Azam MM, Waris A, Nahar N. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy. 2005;29(4):293–302.
Article
Google Scholar
Van Gerpen J, editor. Cetane number testing of biodiesel. In: Proceedings, third liquid fuel conference: liquid fuel and industrial products from renewable resources; 1996.
Puhan S, Saravanan N, Nagarajan G, Vedaraman N. Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass Bioenergy. 2010;34(8):1079–88.
Article
CAS
Google Scholar
Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86(10):1059–70.
Article
CAS
Google Scholar
Bamgboye A, Hansen A. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int Agrophys. 2008;22(1):21.
CAS
Google Scholar
Gopinath A, Puhan S, Nagarajan G. Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study. Proc Inst Mech Eng Part D J Automob Eng. 2009;223(4):565–83.
Article
Google Scholar
Kamal-Eldin A, Andersson R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J Am Oil Chem Soc. 1997;74(4):375–80.
Article
CAS
Google Scholar
Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, et al. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol. 2015;33(1):43–54.
Article
CAS
Google Scholar
Laurens LM, Quinn M, Van Wychen S, Templeton DW, Wolfrum EJ. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem. 2012;403(1):167–78.
Article
CAS
Google Scholar
Laurens L, Nagle N, Davis R, Sweeney N, Van Wychen S, Lowell A, et al. Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem. 2015;17(2):1145–58.
Article
CAS
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory; 2006.
Google Scholar