Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol. 2007;10:236–44.
Article
CAS
Google Scholar
Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54:593–607.
Article
CAS
Google Scholar
Gubitz GM, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol. 1999;67:73–82.
Article
CAS
Google Scholar
Carels N. Jatropha curcas: a review. Adv Bot Res. 2009;50:39–86.
Article
CAS
Google Scholar
Adebowale KO, Adedire CO. Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr J Biotechnol. 2006;5:901–6.
CAS
Google Scholar
Openshaw K. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy. 2000;19:1–15.
Article
Google Scholar
Kumar S, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.). Rev Ind Crops Prod. 2008;28:1–10.
Article
CAS
Google Scholar
Tatikonda LL, Suhas P, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. a biofuel plant. Plant Sci. 2009;176:505–13.
Article
CAS
Google Scholar
Napier JA, Haslam RP, Beaudoin F, Cahoon EB. Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr Opn Plant Biol. 2014;19:68–75.
Article
CAS
Google Scholar
Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels. 2012;5:10.
Article
CAS
Google Scholar
Kim MJ, Yang SW, Hui-Zhu Mao HZ, Veena SP, Yin JN, Chua NH. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels. 2014;7:36.
Article
Google Scholar
Stymne S, Stobart AK. Triacylglycerol biosynthesis. In: Stumpf PK, Conn EE, editors. The biochemistry of plants, lipids: structure and function. New York: Academic Press; 1987. p. 175–214.
Google Scholar
Murphy DJ. Plant lipids: biology, utilization and manipulation. 3rd ed. Oxford: Blackwell Publishing; 2005.
Google Scholar
Xu C, Fan J, Cornish AJ, Benning C. Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extra plastidic TGD4 protein. Plant Cell. 2008;20:2190–204.
Article
CAS
Google Scholar
Yu W, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD. Modification of metabolic pathway of lipid and triacylglycerol production in microalgae. Microbial Cell Fact. 2011;10:91–102.
Article
CAS
Google Scholar
Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil biosynthesis. Curr Opin Plant Biol. 2013;16:358–64.
Article
CAS
Google Scholar
Kroon JTM, Wei WX, Simon WJ, Slabas AR. Identification and functional expression of a type 2 acyl-CoA:diacylglycerolacyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochem. 2006;67:2541–9.
Article
CAS
Google Scholar
Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM. Tung tree DGAT1 and DGAT2 have non redundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell. 2006;18:2294–313.
Article
CAS
Google Scholar
Misra A, Khan A, Niranjan A, Nath P, Sane VA. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochem. 2013;96:37–45.
Article
CAS
Google Scholar
Hobbs DH, Lu C, Hills MJ. Cloning of a cDNA encoding diacylglycerolacyl transferase from Arabidopsis thaliana and its functional expression. FEBS Lett. 1999;452:145–9.
Article
CAS
Google Scholar
Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L. The TAG1 locus of Arabidopsis encodes for a diacylglycerolacyl transferase. Plant Physiol Biochem. 1999;37:831–40.
Article
CAS
Google Scholar
Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerolacyl transferase. Eur J Biochem. 2000;267:85–96.
Article
CAS
Google Scholar
Nykiforuk CL, Furukawa-Stoffer TL, Huff PW, Sarna M, Laroche A, Moloney MM, Weselake RJ. Characterization of cDNAs encoding diacylglycerolacyl transferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis. Biochim Biophys Acta. 2002;1580:95–109.
Article
CAS
Google Scholar
He X, Turner C, Chen GQ, Lin JT, McKeon TA. Cloning and characterization of a cDNA encoding diacylglycerolcyl transferase from castor bean. Lipids. 2004;39:311–8.
Article
CAS
Google Scholar
Milcamps A, Tumaney AW, Paddock T, Pan DA, Ohlrogge J, Pollard M. Isolation of a gene encoding a 1, 2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus. J Biol Chem. 2005;280:5370–7.
Article
CAS
Google Scholar
Wang HW, Zhang JS, Gai JY, Chen SY. Cloning and comparative analysis of the gene encoding diacylglycerolacyl transferase from wild type and cultivated soybean. Theor Appl Genet. 2006;112:1086–97.
Article
CAS
Google Scholar
Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oil seeds. Molecular cloning and expression of peanut cytosolic diacylglycerolacyl transferase. Plant Physiol. 2006;141:1533–43.
Article
CAS
Google Scholar
Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu A, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 2011;18:65–76.
Article
CAS
Google Scholar
Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA, Singh KK, Madasamy P. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genom. 2010;11:606.
Article
Google Scholar
Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS, Campos Leite LD, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FAP, Silva MJD. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom. 2010;11:462.
Article
Google Scholar
Wang P, Wang Z, Dou Y, Zhang X, Wang M, Tian X. Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants. Planta. 2013;238:907–22.
Article
CAS
Google Scholar
Savadi S, Naresh V, Kumar V, Bhat S. Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard (Brassica juncea) increases seed oil and seed weight. Botany. 2015;94:177–84.
Article
Google Scholar
Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerolacyl transferase gene. Plant J. 1999;19:645–53.
Article
CAS
Google Scholar
Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou JT, MacKenzie SL, Covello PS, Kunst L. Alteration of seed fatty acid composition by an ethyl methane- sulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerolacyl transferase activity. Plant Physiol. 1995;108:399–409.
Article
CAS
Google Scholar
Zhang FY, Yang MF, Xu YN. Silencing of DGAT1 in tobacco causes a reduction in seed oil content. Plant Sci. 2005;169:689–94.
Article
CAS
Google Scholar
Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC. Seed-specific overexpression of an Arabidopsis cDNA encoding a diacylglycerolacyl transferase enhances seed oil content and seed weight. Plant Physiol. 2001;126:861–74.
Article
CAS
Google Scholar
Weselake RJ. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot. 2008;59:3543–9.
Article
CAS
Google Scholar
Andrianov V, Borisjuk N, Pogrebnyak N. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J. 2010;8:277–87.
Article
CAS
Google Scholar
Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L, Feng L, Meyer K. An improved variant of soybean type 1 diacylglycerolacyl transferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol. 2016;171:878–93.
Google Scholar
Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 2008;148:89–96.
Article
CAS
Google Scholar
Li R, Yu K, Hildebrand DF. DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids. 2010;45:145–57.
Article
Google Scholar
Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet. 2008;40:367–72.
Article
CAS
Google Scholar
Oakes J, Brackenridge D, Colletti R. Expression of fungal diacylglycerol acyltransferase 2 genes to increase kernel oil in maize. Plant Physiol. 2011;155:1146–57.
Article
CAS
Google Scholar
Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T, Wada N, Sakai H, Morishita Y, Suzuki H, Shibata D, Fukui K. Development of transgenic plants in Jatropha with drought tolerance. Plant Biotechnol. 2012;29:137–43.
Article
CAS
Google Scholar
Jha B, Mishra A, Jha A, Joshi M. Developing transgenic jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE. 2013;8:1–10.
Article
Google Scholar
Ye J, Qu J, Mao HZ, Ma ZG, Rahman NE, Bai C, Chen W, Jiang SY, Ramachandran S, Chua NH. Engineering geminivirus resistance Jatropha curcas. Biotechnol Biofuel. 2014;7:149.
Article
Google Scholar
Cernac A, Benning C. WRINKLED1 encodes an AP2⁄EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004;40:575–85.
Article
CAS
Google Scholar
Sunilkumar G, Mohr LA, Lopata-Finch E, Emani C, Ratore KS. Developmental and tissue specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol. 2002;50:463–74.
Article
CAS
Google Scholar
Weinhold A, Kallenbach M, Baldwin IT. Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol. 2013;13:99.
Article
CAS
Google Scholar
Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103:11206–10.
Article
CAS
Google Scholar
Granda CB, Zhu L, Holtzapple MT. Sustainable liquid biofuels and their environmental impact. Environ Prog. 2007;26:233–50.
Article
CAS
Google Scholar
Somerville C. Biofuels. Curr Biol. 2007;17:115–9.
Article
Google Scholar
Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling KD. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 2008;26:375–81.
Article
CAS
Google Scholar
Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S. Driving on biomass. Science. 2009;324:1019–20.
Article
CAS
Google Scholar
Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem. 2012;287:2288–94.
Article
CAS
Google Scholar
Troncoso-Ponce MA, Cao X, Yang Z, Ohlrogge JB. Lipid turnover during senescence. Plant Sci. 2013;206:13–9.
Article
Google Scholar
Durrett TP, Weise SE, Benning C. Increasing the energy density of vegetative tissues diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotechnol J. 2011;9:874–83.
Article
Google Scholar
Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnol J. 2009;7:694–703.
Article
CAS
Google Scholar
Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 2011;156:1577–88.
Article
CAS
Google Scholar
Devanesan MG, Viruthagiri T, Sugumar N. Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens. Afr J Biotechnol. 2007;6:2497–501.
Article
CAS
Google Scholar
Thaiyasuit P, Pianthong K, Worapun I. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil. J Oleo Sci. 2012;61:81–8.
Article
CAS
Google Scholar
Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc. 1984;61:1638–43.
Article
CAS
Google Scholar
Canakci M, van Gerpen J. Biodiesel production via acid catalysis. Trans ASAE. 1999;42:1203–10.
Article
CAS
Google Scholar
Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sedbrook J, Benning C. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues. Plant Physiol. 2015;169:1836–47.
Article
CAS
Google Scholar
Mazumdar P, Basu A, Paul A, Mahanta C, Sahoo L. Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens-mediated transformation in Jatropha curcas L. South Afr J Bot. 2010;76:337–44.
Article
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassay with Tobacco tissue culture. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Jefferson RA, Kavangh TA, Bevan MW. GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–7.
CAS
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
Article
CAS
Google Scholar
Focks N, Benning C. Wrinkled1. A novel low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 1998;118:91–101.
Article
CAS
Google Scholar
Bradford MM. A rapid and sensitive for the quantitation of micro- gram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
Google Scholar