Qian Z-G, Xia X-X, Lee SY. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng. 2011;108:93–103.
Article
CAS
Google Scholar
Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth GV, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng. 2014;25:113–23.
Article
CAS
Google Scholar
Wang C, Zhang K, Chen Z, Cai H, Wan H, Ouyang P. Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production. Biotechnol Bioprocess Eng. 2015;20:439–46.
Article
Google Scholar
Bioplastics and biopolymers market by type (bio-PE, bio-PET, PLA, starch blends, biodegradable polyesters, regenerated cellulose and PHA), application (packaging, bottles, agriculture), and by region—trends and forecast to 2021. http://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html. Accessed 3 Oct 2016.
Hahn-Hägerdal B, Himmel ME, Somerville C, Wyman C. Welcome to biotechnology for biofuels. Biotechnol Biofuels. 2008;1:1–4.
Article
Google Scholar
Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol. 2003;185:13–9.
Article
CAS
Google Scholar
Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol. 2013;31:170–4.
Article
CAS
Google Scholar
John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102:186–93.
Article
CAS
Google Scholar
Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A. Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli. AMB Express. 2013;3:67.
Article
Google Scholar
Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y. Macroalgae as a biomass feedstock: a preliminary analysis. Pacific Northwest National Laboratory PNNL-19944 2010.
Wei N, Quarterman J, Jin YS. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013;31:70–7.
Article
CAS
Google Scholar
Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol. 2012;118:61–6.
Article
CAS
Google Scholar
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol. 2016;234:139–57.
Article
CAS
Google Scholar
Lim HG, Kwak D, Jung GY. Biofuel production from macroalgae toward bio-based economy. J Mar Biosci Biotechnol. 2014;6:8–16.
Article
CAS
Google Scholar
Lim HG, Seo SW, Jung GY. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresour Technol. 2013;135:564–7.
Article
CAS
Google Scholar
Lim JH, Seo SW, Kim SY, Jung GY. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng. 2013;20:56–62.
Article
CAS
Google Scholar
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol. 2004;70:2861–6.
Article
CAS
Google Scholar
Lee K-S, Hong M-E, Jung S-C, Ha S-J, Yu BJ, Koo HM, Park SM, Seo J-H, Kweon D-H, Park JC, Jin Y-S. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng. 2011;108:621–31.
Article
CAS
Google Scholar
Park J-H, Kim S-H, Park H-D, Kim JS, Yoon J-J. Simultaneous utilization of galactose and glucose by Saccharomyces cerevisiae mutant strain for ethanol production. Renew Energy. 2014;65:213–8.
Article
CAS
Google Scholar
Lim HG, Lim JH, Jung GY. Modular design of metabolic network for robust production of n-butanol from galactose–glucose mixtures. Biotechnol Biofuels. 2015;8:137.
Article
Google Scholar
Li N, Chou H, Yu L, Xu Y. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. Biotechnol Bioprocess Eng. 2014;19:965–72.
Article
CAS
Google Scholar
Farmer WR, Bickmeier J, Lu C, Chang D-E, Skraly F, Ramseier TM. Green process and compositions for producing poly(5HV) and 5 carbon chemicals US patent US9090898 B2. 2015.
Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol. 2007;3:149.
Article
CAS
Google Scholar
Kim SC, Min BE, Hwang HG, Seo SW, Jung GY. Pathway optimization by re-design of untranslated regions for l-tyrosine production in Escherichia coli. Sci Rep. 2015;5:13853.
Article
Google Scholar
Lim JH, Seo SW, Kim SY, Jung GY. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng. 2013;20:56–62.
Article
CAS
Google Scholar
Seo SW, Yang JS, Kim I, Yang J, Min BE, Kim S, Jung GY. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng. 2013;15:67–74.
Article
CAS
Google Scholar
Haywood GW, Large PJ. The occurrence, subcellular localization and partial purification of diamine acetyltransferase in the yeast Candida boidinii grown on spermidine or putrescine as sole nitrogen source. Eur J Biochem. 1985;148:277–83.
Article
CAS
Google Scholar
Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR. Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol. 2003;3:2.
Article
Google Scholar
Seo SW, Kim D, Latif H, O’Brien EJ, Szubin R, Palsson BO. Deciphering fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun. 2014;5:4910.
Article
CAS
Google Scholar
Seo SW, Kim D, O’Brien EJ, Szubin R, Palsson BO. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat Commun. 2015;6:7970.
Article
CAS
Google Scholar
Seo SW, Kim D, Szubin R, Palsson BO. Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep. 2015;12:1289–99.
Article
CAS
Google Scholar
Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol. 2012;4:a003566.
Article
Google Scholar
Gerhart JC, Pardee AB. The enzymology of control by feedback inhibition. J Biol Chem. 1962;237:891–6.
CAS
Google Scholar
Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH, Koffas MAG. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun. 2013;4:1409.
Article
Google Scholar
Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA. 2005;102:12678–83.
Article
CAS
Google Scholar
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565–8.
Article
CAS
Google Scholar
Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MAG. ePathoptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep. 2015;5:11301.
Article
CAS
Google Scholar
Seo SW, Yang JS, Cho HS, Yang J, Kim SC, Park JM, Kim S, Jung GY. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci Rep. 2014;4:4515.
Google Scholar
Ingledew WJ, Poole RK. The respiratory chains of Escherichia coli. Microbiol Rev. 1984;48:222–71.
CAS
Google Scholar
Lim HG, Noh MH, Jeong JH, Park S, Jung GY. Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synth Biol. 2016;5(11):1247–55.
CAS
Google Scholar
De Mey M, De Maeseneire S, Soetaert W, Vandamme E. Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol. 2007;34:689–700.
Article
Google Scholar
Sauer U, Eikmanns BJ. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev. 2005;29:765–94.
Article
CAS
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.
Article
CAS
Google Scholar
Lim SI, Min BE, Jung GY. Lagging strand-biased initiation of red recombination by linear double-stranded DNAs. J Mol Biol. 2008;384:1098–105.
Article
CAS
Google Scholar
Jang S, Lee B, Jeong HH, Jin SH, Jang S, Kim SG, Ac GYJ, Lee CS. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab Chip. 2016;16:1909–16.
Article
CAS
Google Scholar
Lee SY, Chang HN. High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnol Lett. 1993;15:971–4.
Article
CAS
Google Scholar
Yang J, Seo SW, Jang S, Shin SI, Lim CH, Roh TY, Jung GY. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun. 2013;4:1413.
Article
Google Scholar
Qian Z-G, Xia X-X, Lee SY. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng. 2009;104:651–62.
CAS
Google Scholar