Bar-Even A, Noor E, Flamholz A, Milo R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim Biophys Acta. 2013;1827(8–9):1039–47.
Article
CAS
Google Scholar
Kiehl JT, Trenberth KE. Earth’s annual global mean energy budget. Bull Am Meteorol Soc. 1997;78(2):197–208.
Article
Google Scholar
Sundstrom ER, Criddle CS. Optimization of methanotrophic growth and production of poly(3-Hydroxybutyrate) in a high-throughput microbioreactor system. Appl Environ Microbiol. 2015;81(14):4767–73.
Article
CAS
Google Scholar
Trotsenko YA, Doronina NV, Khmelenina VN. Biotechnological potential of aerobic methylotrophic bacteria: a review of current state and future prospects. Appl Biochem Microbiol. 2005;41(5):433–41.
Article
CAS
Google Scholar
Rotatore C, Colman B. The active uptake of carbon dioxide by the unicellular green algae Chlorella saccharophila and C. ellipsoidea. Plant Cell Environ. 1991;14(4):371–5.
Article
CAS
Google Scholar
Jones JP, Prakash GK, Olah GA. Electrochemical CO2 reduction: recent advances and current trends. Isr J Chem. 2014;54(10):1451–66.
Article
CAS
Google Scholar
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335(6076):1596.
Article
CAS
Google Scholar
Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colon B, Way JC, Silver PA, Nocera DG. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc Natl Acad Sci USA. 2015;112(8):2337–42.
Article
CAS
Google Scholar
Tremblay PL, Zhang T. Electrifying microbes for the production of chemicals. Front Microbiol. 2015;6:10.
Google Scholar
Lidstrom ME, Stirling DI. Methylotrophs—genetics and commercial applications. Annu Rev Microbiol. 1990;44:27–58.
Article
CAS
Google Scholar
Bar-Even A, Noor E, Flamholz A, Milo R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim Biophys Acta Bioenerg. 2013;1827(8–9):1039–47.
Article
CAS
Google Scholar
Tai YS, Zhang KC. Enzyme Pathways C1 metabolism redesigned. Nat Chem Biol. 2015;11(6):384–6.
Article
CAS
Google Scholar
Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E, et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci USA. 2015;112(12):3704–9.
CAS
Google Scholar
Atkinson PW, King JA, Hynes MJ. Identification of the ACIA gene controlled by the AMDA regulatory gene in Aspergillus nidulans. Curr Genet. 1985;10(2):133–8.
Article
CAS
Google Scholar
Babel W, Brinkmann U, Muller RH. The auxiliary substrate concept—an approach for overcoming limits of microbial performances. Acta Biotechnol. 1993;13(3):211–42.
Article
CAS
Google Scholar
Chow CM, Rajbhandary UL. Developmental regulation of the gene for formate dehydrogenase in Neurospora crassa. J Bacteriol. 1993;175(12):3703–9.
Article
CAS
Google Scholar
Bar-Even A. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry. 2016;55(28):3851–63.
Article
CAS
Google Scholar
Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, Palmer MA, Schmidt S, Antoniewicz MR, Koffas MA, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng. 2016;39:49–59.
Article
Google Scholar
Mueller JEN, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais J-C, et al. Engineering Escherichia coli for methanol conversion. Metab Eng. 2015;28:190–201.
Article
Google Scholar
Lessmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais J-C, Wendisch VF. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol. 2015;99(23):10163–76.
Article
CAS
Google Scholar
Bruinenberg PM, Jonker R, Vandijken JP, Scheffers WA. Utilization of formate as an additional energy-source by glucose-limited chemostat cultures of candida-utilis cbs-621 and Saccharomyces cerevisiae cbs-8066—evidence for the absence of transhydrogenase activity in yeasts. Arch Microbiol. 1985;142(3):302–6.
Article
CAS
Google Scholar
Hazeu W, Donker RA. A continuous culture study of methanol and formate utilization by the yeast Pichia pastoris. Biotechnol Lett. 1983;5(6):399–404.
Article
CAS
Google Scholar
Babel W, Muller RH, Markuske KD. Improvement of growth-yield of yeast on glucose to the maximum by using an additional energy-source. Arch Microbiol. 1983;136(3):203–8.
Article
CAS
Google Scholar
Babel W. The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge. Eng Life Sci. 2009;9(4):285–90.
Article
CAS
Google Scholar
Geertman JMA, van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 2006;6(8):1193–203.
Article
CAS
Google Scholar
Harris DM, Van Der Krogt ZA, Van Gulik WM, Van Dijken JP, Pronk JT. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum impact on penicillin G production and biomass yield. Appl Environ Microbiol. 2007;73(15):5020–5.
Article
CAS
Google Scholar
Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y. Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol. 2012;110:198–205.
Article
CAS
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.
Article
CAS
Google Scholar
Indarti E, Majid MIA, Hashim R, Chong A. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J Food Compos Anal. 2005;18(2):161–70.
Article
CAS
Google Scholar
You L, Page L, Feng X, Berla B, Pakrasi HB, Tang YJ. Metabolic pathway confirmation and discovery through 13C-labeling of proteinogenic amino acids. J Vis Exp. 2012;59:e3583.
Google Scholar
King ZA, Lu J, Drager A, Miller P, Federowicz S, Lerman JA, Ebrahim A, Palsson BO, Lewis NE. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44(D1):D515–22.
Article
Google Scholar
Dauner M, Sauer U. GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog. 2000;16:642–9.
Article
CAS
Google Scholar
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34:652–64.
Article
CAS
Google Scholar
Brosnan ME, MacMillan L, Stevens JR, Brosnan JT. Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? Biochem J. 2015;472(2):135–46.
Article
CAS
Google Scholar
Feisthauer S, Wick LY, Kastner M, Kaschabek SR, Schlomann M, Richnow HH. Differences of heterotrophic (CO2)-C-13 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. Environ Microbiol. 2008;10(6):1641–51.
Article
CAS
Google Scholar
Dijkstra AJ, Hamilton RJ, Hamm W. Trans fatty acids. New York: Wiley; 2008.
Book
Google Scholar
Froissard M, Canonge M, Pouteaux M, Cintrat B, Mohand-Oumoussa S, Guillouet SE, Chardot T, Jacques N, Casaregola S. Lipids containing medium-chain fatty acids are specific to post-whole genome duplication Saccharomycotina yeasts. BMC Evol Biol. 2015;15:1.
Article
CAS
Google Scholar