Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, et al. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.
Article
CAS
Google Scholar
Zhang Z, Donaldson AA, Ma X. Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv. 2012;30:913–9.
Article
CAS
Google Scholar
Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng/Biotechnol. 2007;108:41–65.
Article
CAS
Google Scholar
Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng/Biotechnol. 2007;108:67–93.
Article
CAS
Google Scholar
Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev. 2013;27:77–93.
Article
Google Scholar
Huang F, Ragauskas AJ. Chemical pretreatment techniques for biofuels and biorefineries from softwood. In: Fang Z, editor. Pretreatment techniques for biofuels and biorefineries. Berlin: Springer; 2013. p. 151–79.
Google Scholar
Silveira MHL, Morais ARC, Da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem. 2015;8:3366–90.
Article
CAS
Google Scholar
Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29:675–85.
Article
CAS
Google Scholar
Liu S. A synergetic pretreatment technology for woody biomass conversion. Appl Energy. 2015;144:114–28.
Article
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86.
Article
CAS
Google Scholar
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66:10–26.
Article
CAS
Google Scholar
Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE. Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng. 2013;110:737–53.
Article
CAS
Google Scholar
Jonsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16.
Article
Google Scholar
Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. Inhibition of cellulases by phenols. Enzyme Microb Technol. 2010;46:170–6.
Article
CAS
Google Scholar
Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog. 2007;23:1333–9.
Article
CAS
Google Scholar
Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng. 2008;101:913–25.
Article
CAS
Google Scholar
Donaldson LA, Wong KKY, Mackie KL. Ultrastructure of steam-exploded wood. Wood Sci Technol. 1988;22:103–14.
Article
CAS
Google Scholar
Barakat A, de Vries H, Rouau X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour Technol. 2013;134:362–73.
Article
CAS
Google Scholar
Cullis IF, Saddler JN, Mansfield SD. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol Bioeng. 2004;85:413–21.
Article
CAS
Google Scholar
Franco H, Ferraz A, Milagres AMF, Carvalho W, Freer J, Baeza J, Mendonca RT. Alkaline sulfite/anthraquinone pretreatment followed by disk refining of Pinus radiata and Pinus caribaea wood chips for biochemical ethanol production. J Chem Technol Biotechnol. 2012;87:651–7.
Article
CAS
Google Scholar
Miura T, Lee SH, Inoue S, Endo T. Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresour Technol. 2012;126:182–6.
Article
CAS
Google Scholar
Zhu W, Zhu JY, Gleisner R, Pan XJ. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour Technol. 2010;101:2782–92.
Article
CAS
Google Scholar
Hoeger IC, Nair SS, Ragauskas AJ, Deng Y, Rojas OJ, Zhu JY. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose. 2013;20:807–18.
Article
CAS
Google Scholar
Kim SM, Dien BS, Singh V. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnol Biofuels. 2016;9:1–15.
Article
Google Scholar
Alvarez-Vasco C, Guo M, Zhang X. Dilute acid pretreatment of Douglas fir forest residues: pretreatment yield, hemicellulose degradation, and enzymatic hydrolysability. Bioenergy Res. 2015;8:42–52.
Article
CAS
Google Scholar
Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN. Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol. 2006;129:55–70.
Article
Google Scholar
Kumar L, Chandra R, Saddler J. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng. 2011;108:2300–11.
Article
CAS
Google Scholar
Alen R. Structure and chemical composition of wood. In: Stenius P, editor. Forest products chemistry. Helsinki: Fapet Oy; 2000. p. 12–57.
Google Scholar
Clark TA, Mackie KL. Steam explosion of the softwood Pinus radiata with sulfur dioxide addition. (1). Process optimization. J Wood Chem Technol. 1987;7:373–403.
Article
CAS
Google Scholar
Ewanick SM, Bura R, Saddler JN. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng. 2007;98:737–46.
Article
CAS
Google Scholar
Monavari S, Galbe M, Zacchi G. Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol. 2009;100:6312–6.
Article
CAS
Google Scholar
Nguyen QA, Tucker MP, Keller FA, Eddy FP. Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol. 2000;84–86:561–76.
Article
Google Scholar
Soderstrom J, Pilcher L, Galbe M, Zacchi G. Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy. 2003;24:475–86.
Article
CAS
Google Scholar
Gao J, Anderson D, Levie B. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar). Biotechnol Biofuels. 2013;6:10.
Article
CAS
Google Scholar
Zhu JY, Pan XJ, Wang GS, Gleisner R. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol. 2009;100:2411–8.
Article
CAS
Google Scholar
Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng. 2005;90:473–81.
Article
CAS
Google Scholar
Wu S-F, Chang H-M, Jameel H, Philips R. Novel green liquor pretreatment of loblolly pine chips to facilitate enzymatic hydrolysis into fermentable sugars for ethanol production. J Wood Chem Technol. 2010;30:205–18.
Article
Google Scholar
Lloyd JA, Murton KD, Newman RH, Suckling ID, Vaidya AA. Careful selection of steaming and attrition conditions during thermo-mechanical pretreatment can increase enzymatic conversion of softwood. J Chem Technol Biotechnol. 2016;92:238–44.
Article
Google Scholar
Vaidya AA, Donaldson LA, Newman RH, Suckling ID, Campion SH, Lloyd JA, Murton KD. Micromorphological changes and mechanism associated with wet ball milling of Pinus radiata substrate and consequences for saccharification at low enzyme loading. Bioresour Technol. 2016;214:132–7.
Article
CAS
Google Scholar
Corson SR, Richardson JD. PAPRO-New Zealand installs a new pilot plant for high-yield pulping research. Appita J. 1988;41:9–11.
Google Scholar
Chum HL, Johnson DK, Black SK, Overend RP. Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol. 1990;24–25:1–14.
Article
Google Scholar
Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmqvist E, Hahn-Hägerdal B. Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol. 1998;70–72:3–15.
Article
Google Scholar
Irvine GM. The significance of the glass transition of lignin in thermomechanical pulping. Wood Sci Technol. 1985;19:139–49.
Article
CAS
Google Scholar
Hua J, Chen G, Xu D, Shi SQ. Impact of thermomechanical refining conditions on fiber quality and energy consumption by mill trial. BioResources. 2012;7:1919–30.
Article
CAS
Google Scholar
Holladay JE, White JF, Bozell JJ, Johnson D. Top value-added chemicals from biomass Volume II. Results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory Report PNNL-16983. 2007. http://www.pnl.gov/main/publications/external/technical_reports/PNNL-16983.pdf Accessed 29 Nov 2016.
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed Engl. 2016;55:8164–215.
Article
CAS
Google Scholar
Wallis AFA. Solvolysis by acids and bases. In: Sarkanen KV, Ludwig CH, editors. Lignins: occurrence, formation, structure and reactions. New York: Wiley; 1971. p. 345–72.
Google Scholar
Li JB, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol. 2007;98:3061–8.
Article
CAS
Google Scholar
Shevchenko SM, Chang K, Dick DG, Gregg DJ, Saddler JN. Structure and properties of lignin in softwoods after SO2-catalyzed steam explosion and enzymatic hydrolysis. Cellul Chem Technol. 2001;35:487–502.
CAS
Google Scholar
Pasco MF, Suckling ID. Lignin removal during kraft pulping: an investigation by thioacidolysis. Holzforschung. 1994;48:504–8.
Article
CAS
Google Scholar
Chen CL. Nitrobenzene and cupric acid oxide oxidations. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin: Springer; 1992. p. 301–21.
Chapter
Google Scholar
Shevchenko SM, Chang K, Robinson J, Saddler JN. Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Bioresour Technol. 2000;72:207–11.
Article
CAS
Google Scholar
Inoue H, Yano S, Endo T, Sakaki T, Sawayama S. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels. 2008;1:2.
Article
Google Scholar
Lee SH, Chang F, Inoue S, Endo T. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresour Technol. 2010;101:7218–23.
Article
CAS
Google Scholar
Zakaria MR, Norrrahim MNF, Hirata S, Hassan MA. Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber. Bioresour Technol. 2015;181:263–9.
Article
CAS
Google Scholar
Shikinaka K, Otsuka Y, Navarro RR, Nakamura M, Shimokawa T, Nojiri M, Tanigawa R, Shigehara K. Simple and practicable process for lignocellulosic biomass utilization. Green Chem. 2016;18:5962–6.
Article
CAS
Google Scholar
Leu S-Y, Zhu JY. Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Res. 2013;6:405–15.
Article
CAS
Google Scholar
Iwasaki T, Yabuuchi T, Nakagawa H, Watano S. Scale-up methodology for tumbling ball mill based on impact energy of grinding balls using discrete element analysis. Adv Powder Technol. 2010;21:623–9.
Article
CAS
Google Scholar
Kaufman Rechulski MD, Käldström M, Richter U, Schüth F, Rinaldi R. Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind Eng Chem Res. 2015;54:4581–92.
Article
CAS
Google Scholar
Wingren A, Galbe M, Zacchi G. Energy considerations for a SSF-based softwood bioethanol plant. Bioresour Technol. 2008;99:2121–31.
Article
CAS
Google Scholar
Zhu JY, Pan XJ. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol. 2010;101:4992–5002.
Article
CAS
Google Scholar
Zhu JY, Zhuang XS. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci. 2012;38:583–98.
Article
CAS
Google Scholar
Vlasenko E, Schulein M, Cherry J, Xu F. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol. 2010;101:2405–11.
Article
CAS
Google Scholar
Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol. 2002;31:353–64.
Article
CAS
Google Scholar
Donaldson LA, Newman RH, Vaidya A. Nanoscale interactions of polyethylene glycol with thermo-mechanically pre-treated Pinus radiata biofuel substrate. Biotechnol Bioeng. 2014;111:719–25.
Article
CAS
Google Scholar
Vaidya AA, Newman RH, Campion SH, Suckling ID. Strength of adsorption of polyethylene glycol on pretreated Pinus radiata wood and consequences for enzymatic saccharification. Biomass Bioenergy. 2014;70:339–46.
Article
CAS
Google Scholar
Zhu JY, Zhu W, Obryan P, Dien BS, Tian S, Gleisner R, Pan XJ. Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol. 2010;86:1355–65.
Article
CAS
Google Scholar
Bailey MJ, Nevalainen KMH. Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol. 1981;3:153–7.
Article
CAS
Google Scholar
Pettersen RV, Schwandt VH. Wood sugar analysis by anion chromatography. J Wood Chem Technol. 1991;11:495–501.
Article
CAS
Google Scholar
Sluiter A, Hames B, Ruez R, Scarlata C, Sluiter J, Templeton D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory analytical procedure. National Renewable Energy Laboratory Technical Report. NREL/TP-510-42623. 2008. http://www.nrel.gov/docs/gen/fy08/42623.pdf. Accessed 30 June 2016.