Dutcher B, Fan M, Russell AG. Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces. 2015;7:2137–48.
Article
CAS
Google Scholar
McGlade C, Ekins P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature. 2015;517:187–90.
Article
CAS
Google Scholar
Ozin GA. Throwing new light on the reduction of CO2. Adv Mater. 2015;27:1957–63.
Article
CAS
Google Scholar
Schwander T, von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science. 2016;354:900–4.
Article
CAS
Google Scholar
Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J. 2015;10:69–82.
Article
CAS
Google Scholar
Fessner WD. Systems biocatalysis: development and engineering of cell-free “artificial metabolisms” for preparative multi-enzymatic synthesis. Nat Biotechnol. 2015;32:658–64.
CAS
Google Scholar
Hodgman CE, Jewett MC. Cell-free synthetic biology: thinking outside the cell. Metab Eng. 2012;14:261–9.
Article
CAS
Google Scholar
Wolfenden R. Massive thermal acceleration of the emergence of primordial chemistry, the incidence of spontaneous mutation, and the evolution of enzymes. J Biol Chem. 2014;289:30198–204.
Article
CAS
Google Scholar
Kay JE, Jewett MC. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab Eng. 2015;32:133–42.
Article
CAS
Google Scholar
Agapakis CM, Boyle PM, Silver PA. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol. 2012;8:527–35.
Article
CAS
Google Scholar
Lopez-Gallego F, Schmidt-Dannert C. Multi-enzymatic synthesis. Curr Opin Chem Biol. 2010;14:174–83.
Article
CAS
Google Scholar
Oroz-Guinea I, Garcia-Junceda E. Enzyme catalyzed tandem reactions. Curr Opin Chem Biol. 2013;17:236–49.
Article
CAS
Google Scholar
Grotzky A, Nauser T, Erdogan H, Schluter AD, Walde P. A fluorescently labeled dendronized polymer–enzyme conjugate carrying multiple copies of two different types of active enzymes. J Am Chem Soc. 2012;134:11392–5.
Article
CAS
Google Scholar
Schoffelen S, van Hest JC. Chemical approaches for the construction of multi-enzyme reaction systems. Curr Opin Struct Biol. 2013;23:613–21.
Article
CAS
Google Scholar
Schoffelen S, Beekwilder J, Debets MF, Bosch D, van Hest JC. Construction of a multifunctional enzyme complex via the strain-promoted azide–alkyne cycloaddition. Bioconjug Chem. 2013;24:987–96.
Article
CAS
Google Scholar
Peters RJ, Marguet M, Marais S, Fraaije MW, van Hest JC, Lecommandoux S. Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed Engl. 2014;53:146–50.
Article
CAS
Google Scholar
Qu R, Shen L, Qu A, Wang R, An Y, Shi L. Artificial peroxidase/oxidase multiple enzyme system based on supramolecular hydrogel and its application as a biocatalyst for cascade reactions. ACS Appl Mater Interfaces. 2015;7:16694–705.
Article
CAS
Google Scholar
Srere PA, Mattiasson B, Mosbach K. An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria. Proc Natl Acad Sci USA. 1973;70:2534–8.
Article
CAS
Google Scholar
Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, et al. Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale. 2014;6:255–62.
Article
CAS
Google Scholar
Kang W, Liu J, Wang J, Nie Y, Guo Z, Xia J. Cascade biocatalysis by multienzyme-nanoparticle assemblies. Bioconjug Chem. 2014;25:1387–94.
Article
CAS
Google Scholar
Ding S, Cargill AA, Medintz IL, Claussen JC. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr Opin Biotechnol. 2015;34:242–50.
Article
CAS
Google Scholar
Shankar S, Soni SK, Daima HK, Selvakannan PR, Khire JM, Bhargava SK, et al. Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Phys Chem Chem Phys. 2015;17:21517–24.
Article
CAS
Google Scholar
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.
Article
CAS
Google Scholar
Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295:1009–14.
Article
CAS
Google Scholar
Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–8.
Article
CAS
Google Scholar
Kim SH, Kaplan JA, Sun Y, Shieh A, Sun HL, Croce CM, et al. The self-assembly of anticancer camptothecin-dipeptide nanotubes: a minimalistic and high drug loading approach to increased efficacy. Chemistry. 2015;21:101–5.
Article
CAS
Google Scholar
Petrov A, Audette GF. Peptide and protein-based nanotubes for nanobiotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:575–85.
Article
CAS
Google Scholar
Sun Y, Kaplan JA, Shieh A, Sun HL, Croce CM, Grinstaff MW, et al. Self-assembly of a 5-fluorouracil-dipeptide hydrogel. Chem Commun. 2016;52:5254–7.
Article
CAS
Google Scholar
Wiradharma N, Tong YW, Yang YY. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials. 2009;30:3100–9.
Article
CAS
Google Scholar
Seabra AB, Durán N. Biological applications of peptides nanotubes: an overview. Peptides. 2013;39:47–54.
Article
CAS
Google Scholar
Huang A, Qin G, Olsen BD. Highly active biocatalytic coatings from protein-polymer diblock copolymers. ACS Appl Mater Interfaces. 2015;7:14660–9.
Article
CAS
Google Scholar
Kameta N, Masuda M, Shimizu T. Soft nanotube hydrogels functioning as artificial chaperones. ACS Nano. 2012;6:5249–58.
Article
CAS
Google Scholar
Lu Q, Kim Y, Bassim N, Raman N, Collins GE. Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes. Analyst. 2016;141:2191–8.
Article
CAS
Google Scholar
Zhao G, Fu J, Dhakal S, Johnson-Buck A, Liu M, Zhang T, et al. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat Commun. 2016;7:10619.
Article
CAS
Google Scholar
Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS. Distinct form I, II, III, and IV RubisCO proteins from the three kingdoms of life provide clues about RubisCO evolution and structure/function relationships. J Exp Bot. 2008;59:1515–24.
Article
CAS
Google Scholar
Durao P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M. Opposing effects of folding and assembly chaperones on evolvability of RubisCO. Nat Chem Biol. 2015;11:148–55.
Article
CAS
Google Scholar
Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature. 1989;342:884–9.
Article
CAS
Google Scholar
Luo S, Wang ZY, Kobayashi M, Nozawa T. The dimerization of folded monomers of ribulose 1,5-bisphosphate carboxylase/oxygenase. J Biol Chem. 2001;276:7023–6.
Article
CAS
Google Scholar
Studer RA, Christin PA, Williams MA, Orengo CA. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci USA. 2014;111:2223–8.
Article
CAS
Google Scholar
Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RubisCO) assembly factor in the α-carboxysome. J Biol Chem. 2014;289:7973–81.
Article
CAS
Google Scholar
Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for RubisCO biogenesis in plants. Plant J. 2014;80:862–9.
Article
CAS
Google Scholar
Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran JM, Pronk JT, et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels. 2013;6:125.
Article
CAS
Google Scholar
Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ. Organization, structure, and assembly of α-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol. 2010;396:105–17.
Article
CAS
Google Scholar
Kerfeld CA, Erbilgin O. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 2015;23:22–34.
Article
CAS
Google Scholar
Frey R, Mantri S, Rocca M, Hilvert D. Bottom-up construction of a primordial carboxysome mimic. J Am Chem Soc. 2016;138:10072–5.
Article
CAS
Google Scholar
Shao H, Seifert J, Romano NC, Gao M, Helmus JJ, Jaroniec CP, et al. Amphiphilic self-assembly of an n-type nanotube. Angew Chem Int Ed Engl. 2010;49:7688–91.
Article
CAS
Google Scholar
Kim SH, Parquette JR. A model for the controlled assembly of semiconductor peptides. Nanoscale. 2012;4:6940–7.
Article
CAS
Google Scholar
Schneider G, Lindqvist Y, Lundqvist T. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J Mol Biol. 1990;211:989–1008.
Article
CAS
Google Scholar
Branden CI, Schneider G, Lindqvist Y, Andersson I, Knight S, Lorimer GH. X-ray structural studies of RubisCO from Rhodospirillum rubrum and spinach. Phil Trans R Soc Lond B. 1986;313:359–65.
Article
Google Scholar
Hansen S, Vollan VB, Hough E, Andersen K. The crystal structure of RubisCO from Alcaligenes eutrophus reveals a novel central eight-stranded β-barrel formed by β-strands from four subunits. J Mol Biol. 1999;288:609–21.
Article
CAS
Google Scholar
He H, Perman JA, Zhu G, Ma S. Metal-organic frameworks for CO2 chemical transformations. Small. 2016;12:6309–24.
Article
CAS
Google Scholar
Hery TM, Satagopan S, Northcutt RG, Tabita FR, Sundaresan VB. Polypyrrole membranes as scaffolds for biomolecule immobilization. Smart Mater Struct. 2016;25:125033.
Article
Google Scholar
Maitland GC. Carbon capture and storage: concluding remarks. Faraday Discuss. 2016;192:581–99.
Article
CAS
Google Scholar
Flood D, Proulx C, Robertson EJ, Battigelli A, Wang S, Schwartzberg AM, et al. Improved chemical and mechanical stability of peptoid nanosheets by photo-crosslinking the hydrophobic core. Chem Commun. 2016;52:4753–6.
Article
CAS
Google Scholar
Bar-Even A, Noor E, Lewis NE, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA. 2010;107:8889–94.
Article
CAS
Google Scholar
Mueller-Cajar O, Morell M, Whitney SM. Directed evolution of RubisCO in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemistry. 2007;46:14067–74.
Article
CAS
Google Scholar
Kreel NE, Tabita FR. Serine 363 of a hydrophobic region of archaeal ribulose 1,5-bisphosphate carboxylase/oxygenase from Archaeoglobus fulgidus and Thermococcus kodakaraensis affects CO2/O2 substrate specificity and oxygen sensitivity. PLoS ONE. 2015;10:e0138351.
Article
Google Scholar
Madgwick PJ, Parmar S, Parry MA. Effect of mutations of residue 340 in the large subunit polypeptide of RubisCO from Anacystis nidulans. Eur J Biochem. 1998;253:476–9.
Article
CAS
Google Scholar
Harpel MR, Hartman FC. Enhanced CO2/O2 specificity of a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem. 1992;267:6475–8.
CAS
Google Scholar
Satagopan S, Spreitzer RJ. Plant-like substitutions in the large-subunit carboxy terminus of Chlamydomonas RubisCO increase CO2/O2 specificity. BMC Plant Biol. 2008;8:85.
Article
Google Scholar
Smith SA, Tabita FR. Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. J Mol Biol. 2003;331:557–69.
Article
CAS
Google Scholar
Smith SA, Tabita FR. Glycine 176 affects catalytic properties and stability of the Synechococcus sp. strain PCC6301 ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem. 2004;279:25632–7.
Article
CAS
Google Scholar
Spreitzer RJ, Peddi SR, Satagopan S. Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal RubisCO. Proc Natl Acad Sci USA. 2005;102:17225–30.
Article
CAS
Google Scholar
Gunn LH, Valegard K, Andersson I. A unique structural domain in Methanococcoides burtonii RubisCO acts as a small-subunit mimic. J Biol Chem. 2017;292:6838–50.
Article
CAS
Google Scholar
Schneider G, Knight S, Andersson I, Branden C-I, Lindqvist Y, Lundqvist T. Comparison of the crystal structures of L2 and L8S8 RubisCO suggests a functional role for the small subunit. EMBO J. 1990;9:2045–50.
CAS
Google Scholar
Satagopan S, Chan S, Perry LJ, Tabita FR. Structure-function studies with the unique hexameric form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Rhodopseudomonas palustris. J Biol Chem. 2014;289:21433–50.
Article
Google Scholar
Kobayashi D, Tamoi M, Iwaki T, Shigeoka S, Wadano A. Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942. Plant Cell Physiol. 2003;44:269.
Article
CAS
Google Scholar
Chen Z, Chastain CJ, Al-Abed SR, Chollet R, Spreitzer RJ. Reduced CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 1988;85:4696–9.
Article
CAS
Google Scholar
Kuehn GD, Hsu TC. Preparative-scale enzymic synthesis of D-[14C]ribulose 1,5-bisphosphate. Biochem J. 1978;175:909–12.
Article
CAS
Google Scholar
Marin-Navarro J, Moreno J. Modification of the proteolytic fragmentation pattern upon oxidation of cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 2003;42:14930–8.
Article
CAS
Google Scholar