Happe T, Hemschemeier A, Winkler M, Kaminski A. Hydrogenases in green algae: do they save the algae’s life and solve our energy problems. Trends Plant Sci. 2002;7:246–50.
Article
CAS
Google Scholar
Happe T, Naber JD. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem. 1993;214:475–81.
Article
CAS
Google Scholar
Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, et al. Microalgae: a green source of renewable H2. Trends Biotechnol. 2000;18:506–11.
Article
CAS
Google Scholar
Li H, Zhang L, Shu LF, Zhuang XS, Liu YM, Chen J, et al. Sustainable photosynthetic H2-production mediated by artificial miRNA silencing of OEE2 gene in green alga Chlamydomonas reinhardtii. Int J Hydrog Energy. 2015;40:5609–16.
Article
CAS
Google Scholar
Saifuddin NM, Priatharsini P. Developments in bio-hydrogen production from algae: a review. Res J Appl Sci Eng Technol. 2016;12:968–82.
CAS
Google Scholar
Florin L, Tsokoglou A, Happe T. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem. 2001;276:6125–32.
Article
CAS
Google Scholar
Yang S, Guarnieri MT, Smolinski S, Ghirardi M, Pienkos PT. De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnol Biofuels. 2013;6(1):118.
Article
CAS
Google Scholar
Eilenberg H, Weiner I, Ben-Zvi O, Pundak C, Marmari A, Liran O, et al. The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels. 2016;9(1):182.
Article
Google Scholar
Peltier G, Tolleter D, Billon E, Cournac L. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res. 2010;106:19–31.
Article
CAS
Google Scholar
Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between [FeFe]− hydrogenase and ferredoxin:NADPþ-oxidoreductase (FNR) enzymes in vitro. PNAS. 2011;108:9396–401.
Article
CAS
Google Scholar
Rumpel S, Siebel JF, Farès C, Duan J, Reijerse E, Happe T, et al. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci. 2014;7:3296–301.
Article
CAS
Google Scholar
Melis A, Happe T. Hydrogen production. green algae as a source of energy. Plant Physiol. 2001;127:740–8.
Article
CAS
Google Scholar
Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000;122:127–36.
Article
CAS
Google Scholar
Geier SC, Huyer S, Praebst K, Husmann M, Walter C, Buchholz R. Outdoor cultivation of Chlamydomonas reinhardtii for photobiological hydrogen production. J Appl Phycol. 2011;24:319–27.
Article
Google Scholar
Wirth R, Lakatos G, Maróti G, Bagi Z, Minárovics J, Nagy K, et al. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process. Biotechnol Biofuels. 2015;8:59.
Article
Google Scholar
Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, et al. Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell. 2008;7:1965–79.
Article
CAS
Google Scholar
Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, et al. Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res. 2010;9:3854–66. https://doi.org/10.1021/pr100076c.
Article
CAS
Google Scholar
Shu LF, Hu ZL. Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii. BMC Genom. 2012;13:108.
Article
CAS
Google Scholar
Li H, Wang YT, Chen MR, Xiao P, Hu CX, Zeng ZY, et al. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii. Sci Rep. 2016;6:34109.
Article
CAS
Google Scholar
González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell. 2010;22:2058–84.
Article
Google Scholar
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 2007;21:1190–203.
Article
CAS
Google Scholar
Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature. 2007;447:1126–9.
Article
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.
Article
CAS
Google Scholar
Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309:310–1.
Article
CAS
Google Scholar
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.
Article
CAS
Google Scholar
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.
Article
CAS
Google Scholar
Wang J, Chen S, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231:25–30.
Article
CAS
Google Scholar
Hong SH, Kim KS, Oh IH. Concise review: exploring miRNAs–toward a better understanding of hematopoiesis. Stem Cells. 2015;33:1–7.
Article
CAS
Google Scholar
Li C, Zhang B. MicroRNAs in control of plant development. J Cell Physiol. 2016;231:303–13. https://doi.org/10.1002/jcp.25125.
Article
CAS
Google Scholar
Shu LF, Hu ZL. Small silencing RNAs in Chlamydomonas reinhardtii. Minerva Biotecnologica. 2010;22:29–37.
Google Scholar
Gao X, Zhang F, Hu J, Cai W, Shan G, Dai D, et al. MicroRNAs modulate adaption to multiple abiotic stresses in Chlamydomonas reinhardtii. Sci Rep. 2016;6:38228.
Article
CAS
Google Scholar
Schroda M, Blöcker D, Beck CF. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 2000;21:121–31.
Article
CAS
Google Scholar
Wang CG, Hu ZL, Lei AP, Jin BH. Biosynthesis of poly-3-hydroxybutyrate (PHB) in the transgenic green alga Chlamydomonas Reinhardtii. J Phycol. 2010;46:396–402.
Article
CAS
Google Scholar
Mu FY, Li H, Hu ZL. Expression of tandem repeat Cecropin B in Chlamydomonas reinhardtii and its antibacterial effect. Prog Biochem Biophys. 2012;39:344–51.
Article
CAS
Google Scholar
Wang CG, Hu ZL, Zhao CN, Mao XM. Isolation of the β-carotene ketolase gene promoter from Haematococcus pluvialis and expression of ble in transgenic Chlamydomonas. J Appl Phycol. 2012;24:1303–10.
Article
Google Scholar
Zhao T, Wang W, Bai X, Qi Y. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J. 2009;58:157–64.
Article
CAS
Google Scholar
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell. 2012;24:415–27.
Article
CAS
Google Scholar
Yamasaki T, Voshall A, Kim EJ, Moriyama E, Cerutti H, Ohama T. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii. Plant J. 2013;76:1045–56. https://doi.org/10.1111/tpj.12354.
Article
CAS
Google Scholar
Niu Y, Zhang L, Qiu H, Wu Y, Wang Z, Zai Y, et al. An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR. Sci Rep. 2015;5:15100.
Article
CAS
Google Scholar
Voshall A, Kim EJ, Ma X, Yamasaki T, Moriyama EN, Cerutti H. miRNAs in the alga Chlamydomonas reinhardtii are not phylogenetically conserved and play a limited role in responses to nutrient deprivation. Sci Rep. 2017;7:5462.
Article
Google Scholar