Khoo HH. Review of bio-conversion pathways of lignocellulose-to-ethanol: sustainability assessment based on land footprint projections. Renew Sust Energ Rev. 2015;46:100–19.
Article
CAS
Google Scholar
Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci. 2014;7:163–73.
Article
CAS
Google Scholar
Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage. 2010;51:1412–21.
Article
CAS
Google Scholar
Cannella D, Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng. 2014;111:59–68.
Article
CAS
PubMed
Google Scholar
Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol. 2014;19:162–70.
Article
CAS
PubMed
Google Scholar
Cannella D, Hsieh CW, Felby C, Jørgensen H. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels. 2012;5:26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karnaouri A, Muraleedharan MN, Topakas E, Rova U, Sandgren M, Christakopoulos P. Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnol Βiofuels. 2017;10:126.
Google Scholar
Lenfant N, Hainaut M, Terrapon N, Drula E, Lombard V, Henrissat B. A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9. Carbohydr Res. 2017;448:166–74.
Article
CAS
PubMed
Google Scholar
Hangasky JA, Iavarone AT, Marletta MA. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc Natl Acad Sci USA. 2018;115:4915–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc. 2014;136:562–5.
Article
CAS
PubMed
Google Scholar
Dimarogona M, Topakas E, Olsson L, Christakopoulos P. Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol. 2012;110:480–7.
Article
CAS
PubMed
Google Scholar
Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN. Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energ Environ Sci. 2014;7:2308–15.
Article
CAS
Google Scholar
Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352:1098–101.
Article
CAS
PubMed
Google Scholar
Rodríguez-Zúñiga UF, Cannella D, de Campos Giordano R, de Lima Camargo Giordano R, Jørgensen H, Felby C. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chemistry. 2015;17:2896–903.
Article
Google Scholar
Westereng B, Cannella D, Agger JW, Jørgensen H, Andersen ML, Eijsink VG, et al. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep. 2015;5:18561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, et al. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Bioresour Technol. 2017;10:121.
Google Scholar
Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, et al. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci Rep. 2016;6:28276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cannella D, Möllers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, et al. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun. 2016;7:11134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Distinct substrate specificities and electron-donating systems of fungal lytic polysaccharide monooxygenases. Front Microbiol. 2018;9:1080.
Article
PubMed
PubMed Central
Google Scholar
Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, et al. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila. Fungal Genet Biol. 2014;72:10–20.
Article
CAS
PubMed
Google Scholar
Brenelli L, Squina FM, Felby C, Cannella D. Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9. Biotechnol Biofuels. 2018;11:10.
Article
PubMed
PubMed Central
Google Scholar
Shimizu S, Yokoyama T, Akiyama T, Matsumoto Y. Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin. J Agric Food Chem. 2012;60:6471–6.
Article
CAS
PubMed
Google Scholar
Ma R, Zhang X, Wang Y, Zhang X. New insights toward quantitative relationships between lignin reactivity to monomers and their structural characteristics. Chemsuschem. 2018;11:2146–55.
Article
CAS
PubMed
Google Scholar
Constant S, Wienk HLJ, Frissen AE, de Peinder P, Boelens R, van Es DS, et al. New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem. 2016;18:2651.
Article
CAS
Google Scholar
Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, et al. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS ONE. 2011;6:e27807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, et al. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA. 2014;111:6287–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo SX, Bond AM, Zhang J. Fourier transformed large amplitude alternating current voltammetry: principles and applications. Rev Polarogr. 2015;61:1.
Article
Google Scholar
Bond ΑM, Duffy NW, Guo SX, Zhang J, Elton D. Changing the look of voltammetry. Anal Chem. 2005;77:186–95.
Article
Google Scholar
Simonov AN, Grosse W, Mashkina EA, Bethwaite B, Tan J, Abramson D, et al. New insights into the analysis of the electrode kinetics of flavin adenine dinucleotide redox center of glucose oxidase immobilized on carbon electrodes. Langmuir. 2014;30(11):3264–73.
Article
CAS
PubMed
Google Scholar
Adamson H, Bond AM, Parkin A. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Chem Commun (Camb). 2017;53(69):9519–33.
Article
CAS
Google Scholar
Zouraris D, Dimarogona M, Karnaouri A, Topakas E, Karantonis A. Direct electron transfer of LPMOs and determination of their formal potentials by large amplitude Fourier transform alternating current cyclic voltammetry. Bioelectrochemistry. 2018;124:149–55.
Article
CAS
PubMed
Google Scholar
Matsakas L, Christakopoulos P. Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol. 2013;127:202–8.
Article
CAS
PubMed
Google Scholar
Nitsos C, Stocklosa R, Karnaouri A, Vörös D, Lange H, Hodge D, Crestini C, Rova U, Christakopoulos P. Isolation and characterization of organosolv and alkaline lignins from hardwood and softwood biomass ACS Sustainable Chem. Eng. 2016;4:5181–93.
CAS
Google Scholar
Matsakas L, Nitsos C, Raghavendran V, Yakimenko O, Persson G, Olsson E, et al. A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol Biofuels. 2018;11:160.
Article
PubMed
PubMed Central
Google Scholar
Raghavendran V, Nitsos C, Matsakas L, Rova U, Christakopoulos P, Olsson L. A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass. AMB Express. 2018;8:114.
Article
PubMed
PubMed Central
Google Scholar
Karnaouri A, Lange H, Crestini C, Rova U, Christakopoulos P. Chemoenzymatic fractionation and characterization of pretreated birch outer bark. ACS Sustain Chem Eng. 2016;4:5289–302.
Article
CAS
Google Scholar
Asikkala J, Tamminen T, Argyropoulos DS. Accurate and reproducible determination of lignin molar mass by acetobromination. J Agric Food Chem. 2012;60:8968–73.
Article
CAS
PubMed
Google Scholar
Stoklosa RJ, Velez J, Kelkar S, Saffron CM, Thies MC, Hodge DB. Correlating lignin structural features to phase partitioning behavior in a novel aqueous fractionation of softwood Kraft black liquor. Green Chem. 2013;15:2904–12.
Article
CAS
Google Scholar
Granata A, Argyropoulos DS. 2-Chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem. 1995;43:1538–44.
Article
CAS
Google Scholar
Sawyer DT, Sobkowiak A, Roberts JL. Electrochemistry for chemists. 2nd ed. Hoboken: John Wiley & Sons Inc.; 1995.
Google Scholar
Lowry OH, Rosbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265.
CAS
PubMed
Google Scholar
Liu B, Olson Å, Wu M, Broberg A, Sandgren M. Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation. PLoS ONE. 2017;12:e0189479.
Article
PubMed
PubMed Central
Google Scholar
Wood TM. Preparation of crystalline, amorphous, and dyed cellulase substrates. Method Enzymol. 1988;160:19–25.
Article
CAS
Google Scholar
Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng. 2014;2:472–85.
Article
CAS
Google Scholar
Li J, Gellerstedt G. Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind Crops Prod. 2008;27:175–81.
Article
CAS
Google Scholar
Wang C, Li H, Li M, Bian J, Sun R. Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments. Sci Rep. 2017;7:593.
Article
PubMed
PubMed Central
Google Scholar
Tsutsumi Y, Kondo R, Sakai K, Imamura H. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung. 1995;49:423–8.
Article
CAS
Google Scholar
Sjöström E. Wood chemistry: fundamentals and applications. USA: Academic Press; 1993.
Google Scholar
Milczarek G. Preparation and characterization of a lignin modified electrode. Electroanalysis. 2007;19:1411–4.
Article
CAS
Google Scholar
Aachmann FL, Sørlie M, Skjåk-Bræk G, Eijsink VG, Vaaje-Kolstad G. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. P Natl Acad Sc USA. 2012;109:18779–84.
Article
CAS
Google Scholar
Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, et al. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. P Natl Acad Sci USA. 2014;111:8446–51.
Article
CAS
Google Scholar
Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, et al. Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J Biol Chem. 2015;290:22955–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dessie Y, Admassie S. Electrochemical study of conducting polymer/lignin composites. Orient J Chem. 2014;29:1359–69.
Article
Google Scholar
Ajjan FN, Casado N, Rębiś T, Elfwing A, Solin N, Mecerreyes D, et al. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. J Mater Chem A. 2016;4:1838–47.
Article
CAS
Google Scholar
Bober P, Gavrilov N, Kovalcik A, Mičušík M, Unterweger C, Pašti IA, et al. Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues. Mater Chem Phys. 2018;213:352–61.
Article
CAS
Google Scholar
Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng. 2013;2:472–85.
Article
Google Scholar
Trajano HL, Engle NL, Foston M, Ragauskas AJ, Tschaplinski TJ, Wyman CE. The fate of lignin during hydrothermal pretreatment. Biotechnol Biofuels. 2013;6(1):110.
Article
CAS
PubMed
PubMed Central
Google Scholar