Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol. 2011;29:615–23.
Article
CAS
Google Scholar
Mullineaux CW. Electron transport and light-harvesting switches in cyanobacteria. Front Plant Sci. 2014;5:7.
Article
Google Scholar
Paul MJ, Foyer CH. Sink regulation of photosynthesis. J Exp Bot. 2001;52:1383–400.
Article
CAS
Google Scholar
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci. 2014;15:351–62.
Article
CAS
Google Scholar
Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro EM. Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc Lond B Biol Sci. 2012;367:3486–93.
Article
CAS
Google Scholar
Wagner H, Jakob T, Fanesi A, Wilhelm C. Towards an understanding of the molecular regulation of carbon allocation in diatoms: the interaction of energy and carbon allocation. Philos T R Soc B. 2017;372:20160410.
Article
Google Scholar
Wilhelm C, Jakob T. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol. 2011;92:909–19.
Article
CAS
Google Scholar
Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol. 2011;168:79–87.
Article
CAS
Google Scholar
Allahverdiyeva Y, Isojarvi J, Zhang P, Aro EM. Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life. 2015;5:716–43.
Article
CAS
Google Scholar
Curien G, Flori S, Villanova V, Magneschi L, Giustini C, Forti G, et al. The water to water cycles in microalgae. Plant Cell Physiol. 2016;57:1354–63.
CAS
PubMed
Google Scholar
Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, et al. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci USA. 2013;110:4111–6.
Article
CAS
Google Scholar
Bersanini L, Battchikova N, Jokel M, Rehman A, Vass I, Allahverdiyeva Y, et al. Flavodiiron protein Flv2/Flv4-related photoprotective mechanism dissipates excitation pressure of PSII in cooperation with phycobilisomes in cyanobacteria. Plant Physiol. 2014;164:805–18.
Article
CAS
Google Scholar
Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol. 2015;33:8–14.
Article
CAS
Google Scholar
Angermayr SA, Rovira AG, Hellingwerf KJ. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 2015;33:352–61.
Article
CAS
Google Scholar
Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol. 2012;162:134–47.
Article
CAS
Google Scholar
Oliver JW, Atsumi S. Metabolic design for cyanobacterial chemical synthesis. Photosynth Res. 2014;120:249–61.
Article
CAS
Google Scholar
Hoschek A, Bühler B, Schmid A. Overcoming the gas-liquid mass transfer of oxygen by coupling photosynthetic water oxidation with biocatalytic oxyfunctionalization. Angew Chem Int Ed. 2017;56:15146–9.
Article
CAS
Google Scholar
Böhmer S, Köninger K, Gómez-Baraibar A, Bojarra S, Mügge C, Schmidt S, et al. Enzymatic oxyfunctionalization driven by photosynthetic water-splitting in the cyanobacterium Synechocystis sp. PCC 6803. Catalysts. 2017;7:240.
Article
Google Scholar
Wlodarczyk A, Gnanasekaran T, Nielsen AZ, Zulu NN, Mellor SB, Luckner M, et al. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metab Eng. 2016;33:1–11.
Article
CAS
Google Scholar
Köninger K, Gómez Baraibar A, Mügge C, Paul CE, Hollmann F, Nowaczyk MM, et al. Recombinant cyanobacteria for the asymmetric reduction of C=C bonds fueled by the biocatalytic oxidation of water. Angew Chem Int Ed. 2016;55:5582–5.
Article
Google Scholar
Xue Y, Zhang Y, Grace S, He QF. Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid. J Appl Phycol. 2014;26:219–26.
Article
CAS
Google Scholar
Itoh K, Nakamura K, Aoyama T, Matsuba R, Kakimoto T, Murakami M, et al. Photobiocatalyzed asymmetric reduction of ketones using Chlorella sp. MK201. Biotechnol Lett. 2012;34:2083–6.
Article
CAS
Google Scholar
Lassen LM, Nielsen AZ, Olsen CE, Bialek W, Jensen K, Moller BL, et al. Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: evidence for light-driven biosynthesis. PLoS ONE. 2014;9:e102184.
Article
Google Scholar
Berepiki A, Hitchcock A, Moore CM, Bibby TS. Tapping the unused potential of photosynthesis with a heterologous electron sink. Acs Synth Biol. 2016;5:1369–75.
Article
CAS
Google Scholar
Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, et al. Microalgal hydrogen production—a review. Bioresour Technol. 2017;243:1194–206.
Article
CAS
Google Scholar
Nagarajan D, Lee DJ, Kondo A, Chang JS. Recent insights into biohydrogen production by microalgae—from biophotolysis to dark fermentation. Bioresour Technol. 2017;227:373–87.
Article
CAS
Google Scholar
Oliver JWK, Atsumi S. A carbon sink pathway increases carbon productivity in cyanobacteria. Metab Eng. 2015;29:106–12.
Article
CAS
Google Scholar
Savakis P, Tan X, Du W, dos Santos FB, Lu X, Hellingwerf KJ. Photosynthetic production of glycerol by a recombinant cyanobacterium. J Biotechnol. 2015;195:46–51.
Article
CAS
Google Scholar
Abramson BW, Kachel B, Kramer DM, Ducat DC. Increased photochemical efficiency in cyanobacteria via an engineered sucrose sink. Plant Cell Physiol. 2016;57:2451–60.
Article
CAS
Google Scholar
Ducat DC, Avelar-Rivas JA, Way JC, Silver PA. Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol. 2012;78:2660–8.
Article
CAS
Google Scholar
Gao X, Gao F, Liu D, Zhang H, Nie XQ, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci. 2016;9:1400–11.
Article
CAS
Google Scholar
Raven JA, Wollenweber B, Handley LL. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol. 1992;121:19–32.
Article
CAS
Google Scholar
Ohmori M, Ohmori K, Strotmann H. Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica. Arch Microbiol. 1977;114:225–9.
Article
CAS
Google Scholar
Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser. 1990;61:183–201.
Article
CAS
Google Scholar
Flynn KJ. Algal carbon-nitrogen metabolism: a biochemical basis for modeling the interactions between nitrate and ammonium uptake. J Plankton Res. 1991;13:373–87.
Article
CAS
Google Scholar
Bienfang PK. Steady state analysis of nitrate-ammonium assimilation by phytoplankton. Limnol Oceanogr. 1975;20:402–11.
Article
CAS
Google Scholar
Dai GZ, Qiu BS, Forchhammer K. Ammonium tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 and the role of the psbA multigene family. Plant Cell Environ. 2014;37:840–51.
Article
CAS
Google Scholar
Markou G, Depraetere O, Muylaert K. Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: a study on chlorophyll fluorescence and electron transport. Algal Res. 2016;16:449–57.
Article
Google Scholar
Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 2008;147:206–15.
Article
CAS
Google Scholar
Ludwig M, Bryant DA. Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Front Microbiol. 2012;3:145.
CAS
PubMed
PubMed Central
Google Scholar
Slovacek RE, Hind G. Energetic factors affecting carbon dioxide fixation in isolated chloroplasts. Plant Physiol. 1980;65:526–32.
Article
CAS
Google Scholar
Jakob T, Wagner H, Stehfest K, Wilhelm C. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot. 2007;58:2101–12.
Article
CAS
Google Scholar
Wagner H, Jakob T, Wilhelm C. Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol. 2006;169:95–108.
Article
CAS
Google Scholar
Gilbert M, Wilhelm C, Richter M. Bio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (P–I) curves in four representative phytoplankton species. J Plant Physiol. 2000;157:307–14.
Article
CAS
Google Scholar
Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ. A common partitioning strategy for photosynthetic products in evolutionarily distinct phytoplankton species. New Phytol. 2013;198:1030–8.
Article
CAS
Google Scholar
Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010;13:344–9.
Article
CAS
Google Scholar
Ohashi Y, Shi W, Takatani N, Aichi M, Maeda S, Watanabe S, et al. Regulation of nitrate assimilation in cyanobacteria. J Exp Bot. 2011;62:1411–24.
Article
CAS
Google Scholar
Flores E, Guerrero MG, Losada M. Photosynthetic nature of nitrate uptake and reduction in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta. 1983;722:408–16.
Article
CAS
Google Scholar
Asada K. The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci. 2000;355:1419–30.
Article
CAS
Google Scholar
Zhang P, Eisenhut M, Brandt AM, Carmel D, Silen HM, Vass I, et al. Operon flv4-flv2 provides cyanobacterial photosystem II with flexibility of electron transfer. Plant Cell. 2012;24:1952–71.
Article
CAS
Google Scholar
Chukhutsina V, Bersanini L, Aro EM, van Amerongen H. Cyanobacterial flv4-2 operon-encoded proteins optimize light harvesting and charge separation in photosystem II. Mol Plant. 2015;8:747–61.
Article
CAS
Google Scholar
Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, et al. FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. Plant Physiol. 2015;167:472–80.
Article
CAS
Google Scholar
Allen JF. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 2003;8:15–9.
Article
CAS
Google Scholar
Pfannschmidt T, Nilsson A, Allen JF. Photosynthetic control of chloroplast gene expression. Nature. 1999;397:625–8.
Article
CAS
Google Scholar
Fujita Y, Murakami A, Ohki K. Regulation of photosystem composition in the cyanobacterial photosynthetic system—the regulation occurs in response to the redox state of the electron pool located between the 2 photosystems. Plant Cell Physiol. 1987;28:283–92.
CAS
Google Scholar
Li H, Sherman LA. A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp strain PCC 6803. J Bacteriol. 2000;182:4268–77.
Article
CAS
Google Scholar
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–61.
Google Scholar
Kwon JH, Rögner M, Rexroth S. Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system. J Biotechnol. 2012;162:156–62.
Article
CAS
Google Scholar
Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophylls a and b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenergy. 1989;975:384–94.
Article
CAS
Google Scholar
Schreiber U, Klughammer C, Kolbowski J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res. 2012;113:127–44.
Article
CAS
Google Scholar
Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59:89–113.
Article
CAS
Google Scholar
Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev. 1998;62:667–83.
CAS
PubMed
PubMed Central
Google Scholar
Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HC, Hellingwerf KJ. Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE. 2015;10:e0139061.
Article
Google Scholar
Acuna AM, Snellenburg JJ, Gwizdala M, Kirilovsky D, van Grondelle R, van Stokkum IHM. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. Photosynth Res. 2016;127:91–102.
Article
CAS
Google Scholar
Ogawa T, Misumi M, Sonoike K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth Res. 2017;133:63–73.
Article
CAS
Google Scholar
Blache U, Jakob T, Su W, Wilhelm C. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae. Plant Physiol Biochem. 2011;49:801–8.
Article
CAS
Google Scholar
Gilbert M, Domin A, Becker A, Wilhelm C. Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica. 2000;38:111–26.
Article
CAS
Google Scholar
Goldman JAL, Kranz SA, Young JN, Tortell PD, Stanley RHR, Bender ML, et al. Gross and net production during the spring bloom along the Western Antarctic Peninsula. New Phytol. 2015;205:182–91.
Article
CAS
Google Scholar