Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, et al. UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell. 2016;28(4):966–83.
CAS
PubMed
PubMed Central
Google Scholar
Liang T, Yang Y, Liu H. Signal transduction mediated by the plant UV-B photoreceptor UVR8. New Phytol. 2018;221(3):1247–52.
PubMed
Google Scholar
Takeno K. Stress-induced flowering: The third category of flowering response. Bot: J. Exp; 2016.
Google Scholar
Xu Y, Charles MT, Luo Z, Mimee B, Tong Z, Véronneau PY, et al. Ultraviolet-C priming of strawberry leaves against subsequent Mycosphaerella fragariae infection involves the action of reactive oxygen species, plant hormones, and terpenes. Plant Cell Environ. 2019;42(3):815–31.
CAS
PubMed
Google Scholar
Sharma K, Li Y, Schenk PM. UV-C-mediated lipid induction and settling, a step change towards economical microalgal biodiesel production. Green Chem. 2014;16(7):3539–48.
CAS
Google Scholar
Sharma KK, Ahmed F, Schenk PM, Li Y. UV-C mediated rapid carotenoid induction and settling performance of Dunaliella salina and Haematococcus pluvialis. Biotechnol Bioeng. 2015;112(10):2106–14.
CAS
PubMed
Google Scholar
Ahmed F, Schenk PM. UV-C radiation increases sterol production in the microalga Pavlova lutheri. Phytochemistry. 2017;139:25–32.
CAS
PubMed
Google Scholar
Urban L, Charles F, de Miranda MRA, Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol. Biochem. 2016;105:1–1.
CAS
PubMed
Google Scholar
Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, Hara AO, et al. Plant UVR8 photoreceptor senses disruption of cross-dimer salt bridges. Science (80 −). 2012;335:1492–7.
CAS
Google Scholar
Velanis CN, Herzyk P, Jenkins GI. Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification. Plant Mol Biol. 2016;92:425–43.
CAS
PubMed
PubMed Central
Google Scholar
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. Front Plant Sci. 2014. https://doi.org/10.3389/fpls.2014.00474/abstract.
Article
PubMed
PubMed Central
Google Scholar
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The high light response and redox control of thylakoid FtsH protease in Chlamydomonas reinhardtii. Mol Plant. 2017;10:99–114.
CAS
PubMed
Google Scholar
Topf U, Suppanz I, Samluk L, Wrobel L, Böser A, Sakowska P, et al. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nat Commun. 2018;9(1):1–7.
CAS
Google Scholar
Thomas TTD, Puthur JT. UV radiation priming: a means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Bot: Environ Exp; 2017.
Google Scholar
Xu Y, Charles MT, Luo Z, Mimee B, Veronneau PY, Rolland D, et al. Preharvest ultraviolet C irradiation increased the level of polyphenol accumulation and flavonoid pathway gene expression in strawberry fruit. J Agric Food Chem. 2017;65:9970–9.
CAS
PubMed
Google Scholar
Li D, Luo Z, Mou W, Wang Y, Ying T, Mao L. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biol Technol. 2014;90:56–62.
CAS
Google Scholar
Tian J, Yu J. Changes in ultrastructure and responses of antioxidant systems of algae. J Photochem Photobiol. 2009;97(3):152–60.
CAS
Google Scholar
Forján E, Garbayo I, Henriques M, Rocha J, Vega JM, Vílchez C. UV-A mediated modulation of photosynthetic efficiency, xanthophyll cycle and fatty acid production of nannochloropsis. Mar Biotechnol. 2011;13(3):366–75.
PubMed
Google Scholar
Bornman JF, Evert RF, Mierzwa RJ. The effect of UV-B and UV-C radiation on sugar beet leaves. Protoplasma. 1983;117(1):7–16.
Google Scholar
Lin Q, Xie Y, Liu W, Zhang J, Cheng S, Xie X, et al. UV-C treatment on physiological response of potato (Solanum tuberosum L.) during low temperature storage. J Food Sci Technol. 2017;54(1):55–61.
CAS
PubMed
Google Scholar
Huang H, Ge Z, Limwachiranon J, Li L, Li W, Luo Z. UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biol Technol. 2017;128:105–11.
CAS
Google Scholar
Colina F, Amaral J, Carbó M, Pinto G, Soares A, Cañal MJ, et al. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep. 2019;9(1):1.
CAS
Google Scholar
Schwacke R, Ponce-Soto GY, Krause K, Bolger AM, Arsova B, Hallab A, et al. MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant. 2019;12:879–92.
CAS
PubMed
Google Scholar
Bottinger L, Guiard B, Oeljeklaus S, Kulawiak B, Zufall N, Wiedemann N, et al. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase. Mol Biol Cell. 2013;24:2609–19. https://doi.org/10.1091/mbc.E13-02-0106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroda M, Hemme D, Mühlhaus T. The Chlamydomonas heat stress response. Plant J. 2015. https://doi.org/10.1111/tpj.12816.
Article
PubMed
PubMed Central
Google Scholar
Hirano G, Izumi H, Yasuniwa Y, Shimajiri S, Ke-Yong W, Sasagiri Y, et al. Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin. Int J Oncol. 2011;38:893–902.
CAS
PubMed
Google Scholar
Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S, Perozeni F, et al. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. Plant Cell Environ. 2020;43(2):496–509.
CAS
PubMed
Google Scholar
Viczián A, Máté Z, Nagy F, Vass I. UV-b induced differential transcription of psbD genes encoding the D2 protein of Photosystem II in the cyanobacterium Synechocystis 6803. Photosynth Res. 2000;64:257–66.
PubMed
Google Scholar
Fu A, He Z, Cho HS, Lima A, Buchanan BB, Luan S. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc Natl Acad Sci. 2007;104:15947–52. https://doi.org/10.1073/pnas.0707851104.
Article
CAS
PubMed
Google Scholar
de Bianchi S, Betterle N, Kouril R, Cazzaniga S, Boekema E, Bassi R, et al. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell. 2011;23:2659–79. https://doi.org/10.1105/tpc.111.087320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Last RL. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments. Proc Natl Acad Sci. 2017;2017:12206. https://doi.org/10.1073/pnas.1712206114.
Article
CAS
Google Scholar
Willmund F, Dorn KV, Schulz-Raffelt M, Schroda M. The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant Physiol. 2008;148:2070–82. https://doi.org/10.1104/pp.108.127944.
Article
PubMed
PubMed Central
Google Scholar
Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature. 2010;464(7292):1210–3.
CAS
PubMed
Google Scholar
Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F. Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun. 2013;4(1):1–8.
CAS
Google Scholar
Carrie C, Murcha MW, Kuehn K, Duncan O, Barthet M, Smith PM, et al. Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana. FEBS Lett. 2008;582:3073–9.
CAS
PubMed
Google Scholar
Fatihi A, Latimer S, Schmollinger S, Block A, Dussault PH, Vermaas WFJ, et al. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K 1 in S ynechocystis and Arabidopsis. Plant Cell. 2015;27:1730–41.
CAS
PubMed
PubMed Central
Google Scholar
Hideg É, Barta C, Kálai T, Vass I, Hideg K, Asada K. Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol. 2002;43(10):1154–64.
CAS
PubMed
Google Scholar
Ledford HK, Chin BL, Niyogi KK. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell. 2007;6(6):919–30.
CAS
PubMed
PubMed Central
Google Scholar
Corpas FJ, Barroso JB. NADPH-generating dehydrogenases: Their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Front Environ Sci. 2014;2:55.
Google Scholar
Galmés J, Aranjuelo I, Medrano H, Flexas J. Variation in Rubisco content and activity under variable climatic factors. Photosynth. Res. 2013;117(1–3):73–90.
PubMed
Google Scholar
Cohen I, Sapir Y, Shapira M. A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. Plant Physiol. 2006;141(3):1089–97.
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Tang X, Zhou B, Hu S, Wang Y. Effect of enhanced UV-B radiation on photosynthetic characteristics of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae). J. Exp. Mar. Bio. Ecol. 2015;469:27–35.
CAS
Google Scholar
Phukan T, Rai AN, Syiem MB. Unstandardized UV-C dose used for killing harmful cyanobacteria may instead initiate accelerated growth in the target organisms. Ecotoxicol Environ Saf. 2019;181:274–83.
CAS
PubMed
Google Scholar
Khrebtukova I, Spreitzer RJ. Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA. 1996;93(24):13689–93.
CAS
PubMed
Google Scholar
Recuenco-Muñoz L, Offre P, Valledor L, Lyon D, Weckwerth W, Wienkoop S. Targeted quantitative analysis of a diurnal RuBisCO subunit expression and translation profile in Chlamydomonas reinhardtii introducing a novel Mass Western approach. J Proteomics. 2015;113:143–53.
PubMed
Google Scholar
Pottier M, Gilis D, Boutry M. The hidden face of rubisco. Trends Plant Sci. 2018;23(5):382–92.
CAS
PubMed
Google Scholar
Tsai AYL, Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: The emerging picture. Front Plant Sci. 2014;5:119.
PubMed
PubMed Central
Google Scholar
Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, et al. Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett. 2017;591(21):3625–36.
CAS
PubMed
PubMed Central
Google Scholar
Xuan F, Huang M, Zhao E, Cui H. MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death Dis. 2018;9:11.
Google Scholar
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. Front Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.00812/abstract.
Article
PubMed
PubMed Central
Google Scholar
Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, et al. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. Plant J. 2018;94:991–1009.
CAS
PubMed
Google Scholar
Tang S, Qin F, Wang X, Liang Z, Cai H, Mo L, et al. H2O2 induces PP2A demethylation to downregulate mTORC1 signaling in HEK293 cells. Cell Biol Int. 2018;42:1182–91.
CAS
PubMed
Google Scholar
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9:1667–70.
CAS
PubMed
Google Scholar
Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, et al. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiol. 2015;168:752–64. https://doi.org/10.1104/pp.15.00319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz-Raffelt M, Chochois V, Auroy P, Cuiné S, Billon E, Dauvillée D, et al. Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase. Biotechnol Biofuels. 2016;9:55.
PubMed
PubMed Central
Google Scholar
Eugeni Piller L. Role of plastoglobules in metabolite repair in the tocopherol redox cycle. Front Plant Sci. 2014;5:298.
Google Scholar
Pascual J, Cañal MJ, Escandón M, Meijón M, Weckwerth W, Valledor L. Integrated physiological, proteomic, and metabolomic analysis of ultra violet (UV) stress responses and adaptation mechanisms in Pinus radiata. Mol Cell Proteomics. 2017;16(3):485–501.
CAS
PubMed
PubMed Central
Google Scholar
Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol Biochem. 2016;109:54–61.
CAS
PubMed
Google Scholar
Escandón M, Cañal MJ, Pascual J, Pinto G, Correia B, Amaral J, et al. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol. 2015;36(1):63–77.
Google Scholar
Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, et al. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell. 2006;18:212–24.
CAS
PubMed
PubMed Central
Google Scholar
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015;82:449–65. https://doi.org/10.1111/tpj.12825.
Article
CAS
PubMed
Google Scholar
Piller LE, Besagni C, Ksas B, Rumeau D, Bréhélin C, Glauser G, Kessler F, Havaux M. Chloroplast lipid droplet type II NAD (P) H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation. Proc Natl Acad Sci. 2011;108(34):14354–9.
CAS
Google Scholar
Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, et al. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell. 2017;171(1):133–47.
CAS
PubMed
PubMed Central
Google Scholar
Meyer MT, Genkov T, Skepper JN, Jouhet J, Mitchell MC, Spreitzer RJ, et al. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas. Proc Natl Acad Sci USA. 2012;109(47):19474–9.
CAS
PubMed
Google Scholar
Davis MC, Fiehn O, Durnford DG. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. Plant Cell Environ. 2013;36:1391–405. https://doi.org/10.1111/pce.12071.
Article
CAS
PubMed
Google Scholar
Demmig-Adams B, Burch TA, Stewart JJ, Savage EL, Adams WW. Algal glycerol accumulation and release as a sink for photosynthetic electron transport. Algal Res. 2017;21:161–8.
Google Scholar
Pascual J, Canal MJ, Escandon M, Meijon M, Weckwerth W, Valledor L. Integrated physiological, proteomic, and metabolomic analysis of ultra violet (UV) stress responses and adaptation mechanisms in Pinus radiata. Mol Cell Proteomics. 2017;16:485–501.
CAS
PubMed
PubMed Central
Google Scholar
Lamelas L, Valledor L, Escandón M, Pinto G, Cañal MJ, Meijón M. Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. J Exp Bot. 2020;71(6):2040–57.
PubMed
Google Scholar
Chen H, Song R, Wang G, Ding Z, Yang C, Zhang J, et al. OLA1 regulates protein synthesis and integrated stress response by inhibiting eIF2 ternary complex formation. Sci Rep. 2015;5:13241.
CAS
PubMed
PubMed Central
Google Scholar
Gan ES, Xu Y, Wong JY, Geraldine Goh J, Sun B, Wee WY, et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat Commun. 2014;5:5098.
CAS
PubMed
Google Scholar
Niu L, Lu F, Pei Y, Liu C, Cao X. Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep. 2007;8:1190–5.
CAS
PubMed
PubMed Central
Google Scholar
Liang SH, Wu H, Wang RR, Wang Q, Shu T, Gao XD. The TORC1–Sch9–Rim15 signaling pathway represses yeast-to-hypha transition in response to glycerol availability in the oleaginous yeast Yarrowia lipolytica. Mol Microbiol. 2017;104(4):553–67.
CAS
PubMed
Google Scholar
Shine MB, Gao Q, Chowda-Reddy RV, Singh AK, Kachroo P, Kachroo A. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat Commun. 2019;10(1):1–3.
Google Scholar
Lee JE, Cho YU, Kim KH, Lee DY. Distinctive metabolomic responses of Chlamydomonas reinhardtii to the chemical elicitation by methyl jasmonate and salicylic acid. Process Biochem. 2016;51:1147–54.
CAS
Google Scholar
Valledor L, Furuhashi T, Hanak AM, Weckwerth W. Systemic cold stress adaptation of chlamydomonas reinhardtIII. Mol Cell Proteomics. 2013;12(8):2032–47.
CAS
PubMed
PubMed Central
Google Scholar
Harris EH. The chlamydomonas sourcebook: introduction to chlamydomonas and its laboratory use. Oxford: Academic Press; 2009.
Google Scholar
Valledor L, Escandón M, Meijón M, Nukarinen E, Cañal MJ, Weckwerth W. A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms. Plant J. 2014;79(1):173–80.
CAS
PubMed
Google Scholar
Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ. Elsevier. 2002;81:337–54.
Google Scholar
Chow PS, Landhäusser SM. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 2004;24(10):1129–36.
CAS
PubMed
Google Scholar
Haldar D, Sen D, Gayen K. Development of spectrophotometric method for the analysis of multi-component carbohydrate mixture of different moieties. Appl Biochem Biotechnol. 2017;181(4):1416–34.
CAS
PubMed
Google Scholar
Moore S, Stein WH. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954;211(2):907–13.
CAS
PubMed
Google Scholar
Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2(4):875–7.
CAS
PubMed
Google Scholar
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207(4):604–11.
CAS
Google Scholar
Valledor L, Furuhashi T, Recuenco-Muñoz L, Wienkoop S, Weckwerth W. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation. Biotechnol Biofuels. 2014;7:171.
PubMed
PubMed Central
Google Scholar
Valledor L, Recuenco-Munoz L, Egelhofer V, Wienkoop S, Weckwerth W. The different proteomes of Chlamydomonas reinhardtii. J Proteomics. 2012;75:5883–7.
CAS
PubMed
Google Scholar
Fernie AR, Usadel B, Birkemeyer C, Steinhauser D, Bergmüller E, Kopka J, et al. GMD@CSB.DB: the Golm metabolome database. Bioinformatics. 2004;21:1635–8. https://doi.org/10.1093/bioinformatics/bti236.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Core Team; 2019. https://www.r-project.org.
Le Cao K-A, Rossow D, Robert-Granié C, Besse P. A sparse PLS for variable selection when integrating omics data. Stat Appl Genet Mol Biol. 2008;7:35.
Google Scholar
Lê Cao K-AK-A, González I, Déjean S, González I. Unravelling “omics” data with the R package mixOmics. HAL. 2012.
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44:D380–4.
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Owen O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
CAS
PubMed
PubMed Central
Google Scholar
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18:623–32.
CAS
PubMed
Google Scholar