Plastics the Facts 2019 An analysis of European plastics production, demand and waste data; 2019. https://www.plasticseurope.org/en/resources/market-data.
Marchal V, van Dellink RDV, Clapp C, Château J, Eliza Lanzi BMJ van V. Climate change. In: OECD Environmental Outlook to 2050; 2011.
Spierling S, Knüpffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, et al. Bio-based plastics—a review of environmental, social and economic impact assessments. J Clean Prod. 2018;1(185):476–91.
Article
Google Scholar
Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial Polyhydroxyalkanoates, microbiological reviews, vol. 54. Washington: American Society for Microbiology (ASM); 1990. p. 450.
Google Scholar
Vu DH, Åkesson D, Taherzadeh MJ, Ferreira JA. Recycling strategies for polyhydroxyalkanoate-based waste materials: an overview. Bioresour Technol. 2020;298:122393.
Article
CAS
PubMed
Google Scholar
Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, et al. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol. 2010;76(23):7811–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kynadi AS, Suchithra TV. Polyhydroxyalkanoates : biodegradable plastics for environmental conservation industrial & environmental biotechnology. In: Patra JK, editors. Studium Press (India) Pvt. Ltd.; 2014.
Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. Engineering the diversity of polyesters. Curr Opin Biotechnol. 2014;29:24–33.
Article
CAS
PubMed
Google Scholar
Abid S, Raza ZA, Hussain T. Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. 3 Biotech. 2016;6(2):142.
Article
PubMed
PubMed Central
Google Scholar
Hoefer P. Activation of polyhydroxyalkanoates: Functionalization and modification. Front Biosci. 2010;15(1):93–121.
Article
CAS
Google Scholar
Manangan T, Shawaphun S. Quantitative extraction and determination of polyhydroxyalkanoate accumulated in Alcaligenes latus dry cells. ScienceAsia. 2010;36(3):199–203.
Article
CAS
Google Scholar
Anis SNS, Md Iqbal N, Kumar S, Amirul AA. Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2. Sep Purif Technol. 2013;102:111–7.
Article
CAS
Google Scholar
Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4(2):55.
Article
PubMed Central
CAS
Google Scholar
Aramvash A, Gholami-Banadkuki N, Moazzeni-Zavareh F, Hajizadeh-Turchi S. An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents. J Microbiol Biotechnol J Microbiol Biotechnol. 2015;11:1936–43.
Article
CAS
Google Scholar
Fei T, Cazeneuve S, Wen Z, Wu L, Wang T. Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system. Biotechnol Prog. 2016;32(3):678–85.
Article
CAS
PubMed
Google Scholar
Pacheco MA, Marshall CL. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels. 1997;11(1):2–29.
Article
CAS
Google Scholar
Tundo P, Selva M. The chemistry of dimethyl carbonate. Acc Chem Res. 2002;35(9):706–16.
Article
CAS
PubMed
Google Scholar
Romano IU, Muzio N Di. United States Patent (19); 1982. p. 4–6.
Kanegsberg B, Kanegsberg E. Handbook for critical cleaning. Handbook for Critical Cleaning: CRC Press; 2011.
Book
Google Scholar
Pérez-Rivero C, López-Gómez JP, Roy I. A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: state-of-the-art and latest developments. Biochem Eng J. 2019;150:107283.
Article
CAS
Google Scholar
Comeau Y, Hall KJ, Oldham WK. Determination of poly-3-hydroxybutyrate and poly-3-hydroxyvalerate in activated sludge by gas-liquid chromatography. Appl Environ Microbiol. 1988;54(9):2325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn SK, Chang YK, Kim BS, Lee KM, Chang HN. The recovery of poly(3-hydroxybutyrate) by using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Tech. 1993;7(3):209–12.
Article
CAS
Google Scholar
Porter M, Yu J. Crystallization kinetics of poly(3-hydroxybutyrate) granules in different environmental conditions. J Biomater Nanobiotechnol. 2011;2(3):301.
Article
CAS
Google Scholar
Fiorese ML, Freitas F, Pais J, Ramos AM, De Aragão GMF, Reis MAM. Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng Life Sci. 2009;9(6):454–61.
Article
CAS
Google Scholar
Li R, Zhang H, Qi Q. The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol. 2007;98(12):2313–20.
Article
CAS
PubMed
Google Scholar
Lee SY, Chang HN. Production of poly(hydroxyalkanoic acid). In: Advances in biochemical engineering/biotechnology. Berlin: Springer; 1995. p. 27–58.
Google Scholar
Choi JI, Lee SY. Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng. 1998;62(5):546–53.
Article
Google Scholar
Liu F, Li W, Ridgway D, Gu T, Shen Z. Production of poly-β-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnol Lett. 1998;20(4):345–8.
Article
CAS
Google Scholar
Righi S, Baioli F, Samorì C, Galletti P, Tagliavini E, Stramigioli C, et al. A life cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethyl carbonate. J Clean Prod. 2017;168:692–707.
Article
CAS
Google Scholar
Khoo HH, Isoni V, Sharratt PN. LCI data selection criteria for a multidisciplinary research team: LCA applied to solvents and chemicals. Sustain Prod Consum. 2018;16:68–87.
Article
Google Scholar
McChalicher CWJ, Srienc F, Rouse DP. Solubility and degradation of polyhydroxyalkanoate biopolymers in propylene carbonate. AIChE J. 2010;56(6):1616–25.
Article
CAS
Google Scholar
Samorì C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, et al. Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem. 2015;17(2):1047–56.
Article
CAS
Google Scholar
Domínguez-Díaz M, Meneses-Acosta A, Romo-Uribe A, Peña C, Segura D, Espin G. Thermo-mechanical properties, microstructure and biocompatibility in poly-β-hydroxybutyrates (PHB) produced by OP and OPN strains of Azotobacter vinelandii. Eur Polym J. 2015;63:101–12.
Article
CAS
Google Scholar
Lauzier C, Revol JF, Marchessault RH. Topotactic crystallization of isolated poly(β-hydroxybutyrate) granules from Alcaligenes eutrophus. FEMS Microbiol Lett. 1992;103(2–4):299–310.
CAS
Google Scholar
Jüttner RR, Lafferty RM, Knackmuss HJ. A simple method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol. 1975;1(3):233–7.
Article
Google Scholar
Wong PTT, Wong RK, Caputo TA, Godwin TA, Rigas B. Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. Proc Natl Acad Sci U S A. 1991;88(24):10988–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fleming I, Williams D. Spectroscopic methods in organic chemistry. London: McGraw-Hill; 2019.
Book
Google Scholar
Hedrick DB, Nivens DE, Stafford C, White DC. Rapid differentiation of archaebacteria from eubacteria by diffuse reflectance Fourier-transform IR spectroscopic analysis of lipid preparations. J Microbiol Methods. 1991;13(1):67–73.
Article
CAS
Google Scholar
Zeroual W, Choisy C, Doglia SM, Bobichon H, Angiboust JF, Manfait M. Monitoring of bacterial growth and structural analysis as probed by FT-IR spectroscopy. BBA Mol Cell Res. 1994;1222(2):171–8.
CAS
Google Scholar
Nelson W, Sperry J. UV resonance and raman spectroscopic detection and identification of bacteria and other microorganims. In: Nelson WH, editor. Modern techniques for rapid microbiological analysis. New York: VCH Publishers; 1991. p. 97–143.
Google Scholar
Kahar P, Agus J, Kikkawa Y, Taguchi K, Doi Y, Tsuge T. Effective production and kinetic characterization of ultra-high-molecular- weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stab. 2005;87(1):161–9.
Article
CAS
Google Scholar
Zhang H, Obias V, Gonyer K, Dennis D. Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol. 1994;60(4):1198–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kusaka S, Abe H, Lee SY, Doi Y. Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl Microbiol Biotechnol. 1997;47(2):140–3.
Article
CAS
PubMed
Google Scholar
Jiang G, Johnston B, Townrow DE, Radecka I, Koller M, Chaber P, et al. Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates. Polymers (Basel). 2018;10(7):731.
Article
CAS
Google Scholar
Dietrich K, Dumont MJ, Del Rio LF, Orsat V. Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum. 2017;9:58–70.
Article
Google Scholar
Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA production—Identifying the ecological potential of bio-plastic. Chem Biochem Eng Q. 2015;29(2):299–305.
Article
CAS
Google Scholar
Righi S, Baioli F, Samorì C, Galletti P, Tagliavini E, Stramigioli C, et al. A life cycle assessment of poly-hydroxybutyrate extraction from microbial biomass using dimethyl carbonate. J Clean Prod. 2017;1(168):692–707.
Article
CAS
Google Scholar
Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess. 2008;13:532.
Article
CAS
Google Scholar
Cristóbal J, Matos CT, Aurambout JP, Manfredi S, Kavalov B. Environmental sustainability assessment of bioeconomy value chains. Biomass Bioenerg. 2016;89:159–71.
Article
Google Scholar
Martínez V, Herencias C, Jurkevitch E, Prieto MA. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep. 2016;6:24381.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pais J, Farinha I, Freitas F, Serafim LS, Martínez V, Martínez JC, et al. Improvement on the yield of polyhydroxyalkanotes production from cheese whey by a recombinant Escherichia coli strain using the proton suicide methodology. Enzyme Microb Technol. 2014;55:151–8.
Article
CAS
PubMed
Google Scholar
Lonare AA, Patel SR. Antisolvent crystallization of poorly water soluble drugs. Int J Chem Eng Appl. 2013;4(5):337–41.
CAS
Google Scholar
Giulietti M, Bernardo A. Crystallization by antisolvent addition and cooling. In: Andreeta MRB, editor. Crystallization—science and technology; 2012. p. 379–96.
Braunegg G, Sonnleitner B, Lafferty RM. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol. 1978;6:29–37.
Article
CAS
Google Scholar
The R Foundation. R: the R Project for Statistical Computing; 2018. https://www.r-project.org/. Accessed 13 May 2020.
Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw. 2007;23(7):1–46.
Article
Google Scholar
Akita S, Einaga Y, Miyaki Y, Fujita H. Solution properties of poly(D-β-hydroxybutyrate). 1. Biosynthesis and characterization. Macromolecules. 1976;9(5):774–80.
Article
CAS
Google Scholar
ISO. 14040: environmental management–life cycle assessment—principles and framework. Geneva: International organization for standardization; 2006.
Google Scholar
ISO. 14044: environmental management—Life cycle assessment—Requirements and guidelines. Geneva: International Organization for Standardization; 2006.
Google Scholar
Breil C, Meullemiestre A, Vian M, Chemat F. Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules. 2016;21(2):1–14.
Article
CAS
Google Scholar
Holbrook MT. Chloroform. Kirk-Othmer Encycl Chem Technol. 2000;6:279–90.
Google Scholar
Righi S, Bandini V, Fabbri D, Cordella M, Stramigioli C, Tugnoli A. Modelling of an alternative process technology for biofuel production and assessment of its environmental impacts. J Clean Prod. 2016;2016(122):42–51.
Article
Google Scholar
Guinée JB. Selection of impact categories and classification of LCI Results To Impact Categories. In: Hauschild MHM, editor. Life cycle impact assessment LCA compendium—the complete world of life cycle assessment. Dordrecht: Springer; 2015. p. 17–37.
Google Scholar
European Commission—Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Detailed guidance. First Edit. Publications Office of the European Union; 2010. 417 p.
The European Commission. European Platform on Life Cycle Assessment; 2017. https://eplca.jrc.ec.europa.eu/ilcd.html. Accessed 13 May 2020.