Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev. 2010;14(2):578–97.
Article
CAS
Google Scholar
Czajka J, Wang Q, Wang Y, Tang YJ. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms. Appl Microbiol Biotechnol. 2017;101(20):7427–34.
Article
CAS
PubMed
Google Scholar
Gowen CM, Fong SS. Applications of systems biology towards microbial fuel production. Trends Microbiol. 2011;19(10):516–24.
Article
CAS
PubMed
Google Scholar
Sims R, Taylor M. From 1st-to 2nd-generation biofuel technologies: an overview of current industry and RD&D activities. IEA Bioenergy. 2008.
Olson DG, McBride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol. 2012;23(3):396–405.
Article
CAS
PubMed
Google Scholar
Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB. Cyanobacteria: Promising biocatalysts for sustainable chemical production. J Biol Chem. 2018;293(14):5044–52.
Article
CAS
PubMed
Google Scholar
Karthikeyan R, Singh R, Bose A. Microbial electron uptake in microbial electrosynthesis: a mini-review. J Ind Microbiol Biotechnol. 2019;46(9–10):1419–26.
Article
CAS
PubMed
Google Scholar
Devarapalli M, Atiyeh HK. A review of conversion processes for bioethanol production with a focus on syngas fermentation. Biofuel Res J. 2015;2(3):268–80.
Article
CAS
Google Scholar
Pathak VM, Navneet. Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess. 2017;4(1):15.
Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM. Non-model organisms, a species endangered by proteogenomics. J Proteomics. 2014;105:5–18.
Article
CAS
PubMed
Google Scholar
Eldem V, Zararsiz G, Taşçi T, Duru YBIP, Bakir Y, Erkan M. Transcriptome analysis for non-model organism: current status and best practices. Applications of RNA-Seq and omics strategies—from microorganisms to human health. 2017.
Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29(1):51–63.
Article
PubMed
Google Scholar
Joyce AR, Palsson BO. The model organism as a system: Integrating ‘omics’ data sets. Nat Rev Mol Cell Biol. 2006;7(3):198–210.
Article
CAS
PubMed
Google Scholar
Fondi M, Liò P. Multi -omics and metabolic modelling pipelines: Challenges and tools for systems microbiology. Microbiol Res. 2015;171:52–64.
Article
CAS
PubMed
Google Scholar
Yan Q, Fong SS. Challenges and advances for genetic engineering of non-model bacteria and uses in consolidated bioprocessing. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.02060.
Article
PubMed
PubMed Central
Google Scholar
Calvin N, Hanawalt P. High-efficiency transformation of bacterial cells by electroporation. J Bacteriol. 1988;170(6):2796–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988;16(13):6127–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH. High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett. 1989;65(3):299–303.
Article
CAS
Google Scholar
Brigidi P, De Rossi E, Bertarini ML, Riccardi G, Matteuzzi D. Genetic transformation of intact cells of Bacillus subtilis by electroporation. FEMS Microbiol Lett. 1990;67(1–2):135–8.
Article
CAS
Google Scholar
Olson DG, Lynd LR. Transformation of Clostridium thermocellum by electroporation. Methods Enzymol. 2012;510:317–30.
Article
CAS
PubMed
Google Scholar
Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuka K, Takamura Y. Transformation of Pseudomonas putida by electroporation. Biosci Biotechnol Biochem. 1994;58(5):851–4.
Article
CAS
PubMed
Google Scholar
Benatuil L, Perez JM, Belk J, Hsieh C-M. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel. 2010;23(4):155–9.
Article
CAS
PubMed
Google Scholar
Hileman T, Santangelo T. Genetics techniques for Thermococcus kodakarensis. Front Microbiol. 2012;3(195):195.
PubMed
PubMed Central
Google Scholar
Trieu-Cuot P, Carlier C, Martin P, Courvalin P. Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett. 1987;48(1–2):289–94.
Article
CAS
Google Scholar
Mazodier P, Petter R, Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol. 1989;171(6):3583–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tominaga Y, Ohshiro T, Suzuki H. Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species. Extremophiles. 2016;20(3):375–81.
Article
CAS
PubMed
Google Scholar
Matsushima P, Broughton MC, Turner JR, Baltz RH. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: Effects of chromosomal insertions on macrolide A83543 production. Gene. 1994;146(1):39–45.
Article
CAS
PubMed
Google Scholar
Bierman M, Logan R, O’Brien K, Seno ET, Nagaraja Rao R, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 1992;116(1):43–9.
Article
CAS
PubMed
Google Scholar
Baltz RH, Hosted TJ. Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol. 1996;14(7):245–50.
Article
CAS
PubMed
Google Scholar
Yamamoto H, Maurer KH, Hutchinson CR. Transformation of Streptomyces erythraeus. J Antiobiot. 1986;39(9):1304–13.
Article
CAS
Google Scholar
Hopwood DA. Genetic manipulation of Streptomyces. A laboratory manual. Endeavour. 1985. https://doi.org/10.1016/0160-9327(87)90187-6.
Article
Google Scholar
Katsumata R, Ozaki A, Oka T, Furuya A. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol. 1984;159(1):306–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bibb MJ, Ward JM, Hopwood DA. Transformation of plasmid DNA into Streptomyces at high frequency. Nature. 1978;274(5669):398–400.
Article
CAS
PubMed
Google Scholar
Blokesch M. Natural competence for transformation. Curr Biol. 2016;26(21):R1126–30.
Article
CAS
PubMed
Google Scholar
Dubnau D. Genetic competence in Bacillus subtilis. Microbiol Rev. 1991;55(3):395–424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T, et al. Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacterbaylyi. Appl Environ Microbiol. 2006;72(1):932–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyne ME, Bruder M, Moo-Young M, Chung DA, Chou CP. Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnol Adv. 2014;32(3):623–41.
Article
CAS
PubMed
Google Scholar
Thomason LC, Costantino N, Court DL. E. coli genome manipulation by P1 transduction. Curr Protocols Mol Biol. 2007. https://doi.org/10.1002/0471142727.mb0117s79.
Article
Google Scholar
Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970;53(1):159–62.
Article
CAS
PubMed
Google Scholar
Song Y, Hahn T, Thompson IP, Mason TJ, Preston GM, Li G, et al. Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res. 2007;35(19):129.
Article
CAS
Google Scholar
Shark KB, Smith FD, Harpending PR, Rasmussen JL, Sanford JC. Biolistic transformation of a prokaryote, Bacillus megaterium. Appl Environ Microbiol. 1991;57(2):480–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawata Y, Yano S, Kojima H. Escherichia coli can be transformed by a liposome-mediated lipofection method. Biosci Biotechnol Biochem. 2003;67(5):1179–81.
Article
CAS
PubMed
Google Scholar
Wilharm G, Lepka D, Faber F, Hofmann J, Kerrinnes T, Skiebe E. A simple and rapid method of bacterial transformation. J Microbiol Methods. 2010;80(2):215–6.
Article
CAS
PubMed
Google Scholar
Arber W, Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500.
Article
CAS
PubMed
Google Scholar
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev. 2013;77(1):53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.
Article
CAS
PubMed
Google Scholar
Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359(6379):4120.
Article
CAS
Google Scholar
Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol. 2020;18(2):113–9.
Article
CAS
PubMed
Google Scholar
Mermelstein LD, Papoutsakis ET. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Applied Env Microbiol. 1993;59(4):1077–81.
Article
CAS
Google Scholar
Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM. Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems. J Ind Microbiol Biotechnol. 2019. https://doi.org/10.1007/s10295-019-02218-x.
Article
PubMed
PubMed Central
Google Scholar
Chung D, Farkas J, Westpheling J. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels. 2013;6(1):82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET. Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Bio/Technology. 1992;10(2):190–5.
CAS
Google Scholar
Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J. Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS ONE. 2012;7(8):e43844.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Wang W, Deng A, Sun Z, Zhang Y, Liang Y, et al. A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genet. 2012;8(9):e1002987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monk IR, Shah IM, Xu M, Tan M-W, Foster TJ. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio. 2012;3(2):e00277-11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ando T, Xu Q, Torres M, Kusugami K, Israel DA, Blaser MJ. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol Microbiol. 2000;37(5):1052–65.
Article
CAS
PubMed
Google Scholar
Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol. 2008;190(24):7885–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox KL, Baltz RH. Restriction of bacteriophage plaque formation in Streptomyces spp. J Bacteriol. 1984;159(2):499–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinform. 2015;13(5):278–89.
Article
Google Scholar
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc. 2015;10(3):475–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14(4):411–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 2015;43(Database issue):D298–9.
Mohapatra SS, Biondi EG. DNA methylation in prokaryotes: regulation and function. In: Krell T, editor. Cellular ecophysiology of microbe. Cham: Springer International Publishing; 2017. p. 1–21.
Google Scholar
Rachkevych N, Sybirna K, Boyko S, Boretsky Y, Sibirny A. Improving the efficiency of plasmid transformation in Shewanella oneidensis MR-1 by removing ClaI restriction site. J Microbiol Methods. 2014;99:35–7.
Article
CAS
PubMed
Google Scholar
Kim JY, Wang Y, Park MS, Ji GE. Improvement of transformation efficiency through in vitro methylation and SacII site mutation of plasmid vector in Bifidobacterium longum MG1. J Microbiol Biotechnol. 2010;20(6):1022–6.
Article
CAS
PubMed
Google Scholar
Johnston CD, Cotton SL, Rittling SR, Starr JR, Borisy GG, Dewhirst FE, et al. Systematic evasion of the restriction-modification barrier in bacteria. Proc Natl Acad Sci. 2019;116(23):11454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, et al. Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res. 2009;37(1):e3.
Article
PubMed
CAS
Google Scholar
Jennert KCB, Tardif C, Young DI, Young M. Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology. 2000;146(12):3071–80.
Article
CAS
PubMed
Google Scholar
Donahue JP, Israel DA, Peek RM Jr, Blaser MJ, Miller GG. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol Microbiol. 2000;37(5):1066–74.
Article
CAS
PubMed
Google Scholar
Matsushima P, Baltz RH. Transformation of Saccharopolyspora spinosa protoplasts with plasmid DNA modified in vitro to avoid host restriction. Microbiology. 1994;140(1):139–43.
Article
CAS
Google Scholar
Purdy D, O’Keeffe TA, Elmore M, Herbert M, McLeod A, Bokori-Brown M, et al. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol. 2002;46(2):439–52.
Article
CAS
PubMed
Google Scholar
Mell JC, Redfield RJ. Natural competence and the evolution of DNA uptake specificity. J Bacteriol. 2014;196(8):1471.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guss AM, Olson DG, Caiazza NC, Lynd LR. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels. 2012;5(1):30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolek J, Sedlar K, Provaznik I, Patakova P. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: Development of methods for electrotransformation, conjugation, and sonoporation. Biotechnol Biofuels. 2016;9(1):14.
Article
PubMed
PubMed Central
CAS
Google Scholar
González-Cerón G, Miranda-Olivares OJ, Servín-González L. Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases. FEMS Microbiol Lett. 2009;301(1):35–43.
Article
PubMed
CAS
Google Scholar
Baker TA, Wickner SH. Genetics and enzymology of DNA replication in Escherichia coli. Ann Rev Genet. 1992;26:447–77.
Article
CAS
PubMed
Google Scholar
Jain A, Srivastava P. Broad host range plasmids. FEMS Microbiol Lett. 2013;348(2):87–96.
Article
CAS
PubMed
Google Scholar
Bi C, Su P, Müller J, Yeh Y-C, Chhabra SR, Beller HR, et al. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microb Cell Fact. 2013;12(1):107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chung D, Cha M, Farkas J, Westpheling J. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: Use for extending genetic methodologies to other members of this genus. PLoS ONE. 2013;8(5):e62881-e.
Article
CAS
Google Scholar
Liu D, Pakrasi HB. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Fact. 2018;17(1):48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee S-W, Browning GF, Markham PF. Development of a replicable oriC plasmid for Mycoplasma gallisepticum and Mycoplasma imitans, and gene disruption through homologous recombination in M. gallisepticum. Microbiology. 2008;154(9):2571–80.
Article
CAS
PubMed
Google Scholar
Zakrzewska-Czerwińska J, Majka J, Schrempf H. Minimal requirements of the Streptomyces lividans 66 oriC region and its transcriptional and translational activities. J Bacteriol. 1995;177(16):4765.
Article
PubMed
PubMed Central
Google Scholar
Peteranderl R, Shotts EB Jr, Wiegel J. Stability of antibiotics under growth conditions for thermophilic anaerobes. Appl Environ Microbiol. 1990;56(6):1981–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem. 1999;126(5):951–6.
Article
CAS
PubMed
Google Scholar
Vidal L, Pinsach J, Striedner G, Caminal G, Ferrer P. Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J Biotechnol. 2008;134(1–2):127–36.
Article
CAS
PubMed
Google Scholar
Schneider JC, Jenings AF, Mun DM, McGovern PM, Chew LC. Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation. Biotechnol Progress. 2005;21(2):343–8.
Article
CAS
Google Scholar
Heap JT, Pennington OJ, Cartman ST, Minton NP. A modular system for Clostridium shuttle plasmids. J Microbiol Methods. 2009;78(1):79–85.
Article
CAS
PubMed
Google Scholar
Wicke N, Radford D, Verrone V, Wipat A, French CE. BacilloFlex: a modular DNA assembly toolkit for Bacillus subtilis synthetic biology. bioRxiv. 2017. https://doi.org/10.1101/185108.
Article
Google Scholar
Anthony WE, Carr RR, DeLorenzo DM, Campbell TP, Shang Z, Foston M, et al. Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds. Biotechnol Biofuels. 2019;12(1):192.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song CW, Lee J, Lee SY. Genome engineering and gene expression control for bacterial strain development. Biotechnol J. 2015;10(1):56–68.
Article
CAS
PubMed
Google Scholar
Zhang Y, Buchholz F, Muyrers JPP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998;20(2):123–8.
Article
CAS
PubMed
Google Scholar
Reyrat JM, Pelicic V, Gicquel B, Rappuoli R. Counterselectable markers: Untapped tools for bacterial genetics and pathogenesis. Infect Immun. 1998;66(9):4011–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Zyl WF, Dicks LMT, Deane SM. Development of a novel selection/counter-selection system for chromosomal gene integrations and deletions in lactic acid bacteria. BMC Mol Bio. 2019;20(1):10.
Article
Google Scholar
Zhang X-Z, Yan X, Cui Z-L, Hong Q, Li S-P. mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res. 2006;34(9):e71-e.
Article
CAS
Google Scholar
Dubeau M-P, Ghinet MG, Jacques P-E, Clermont N, Beaulieu C, Brzezinski R. Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl Environ Microbiol. 2009;75(4):1211–4.
Article
CAS
PubMed
Google Scholar
Boeke JD, La Croute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–6.
Article
CAS
PubMed
Google Scholar
Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, et al. Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol. 2010;76(19):6591–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galvao TC, de Lorenzo V. Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a ∆betCDE Pseudomonas putida strain. Appl Environ Microbiol. 2005;71(2):883–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khasanov FK, Zvingila DJ, Zainullin AA, Prozorov AA, Bashkirov VI. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet. 1992;234(3):494–7.
Article
CAS
PubMed
Google Scholar
Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol. 1985;164(2):918–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabret C, Ehrlich D, Noirot P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol. 2002;46(1):25–36.
Article
CAS
PubMed
Google Scholar
Pritchett MA, Zhang JK, Metcalf WW. Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea. Appl Environ Microbiol. 2004;70(3):1425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol. 2011;77(23):8288–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Husson RN, James BE, Young RA. Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol. 1990;172(2):519–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kast P. pKSS–a second-generation general purpose cloning vector for efficient positive selection of recombinant clones. Gene. 1994;138(1–2):109–14.
Article
CAS
PubMed
Google Scholar
van der Geize R, de Jong W, Hessels GI, Grommen AWF, Jacobs AAC, Dijkhuizen L. A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res. 2008;36(22):e151-e.
Article
CAS
Google Scholar
Ueki T, Inouye S, Inouye M. Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene. 1996;183(1–2):153–7.
Article
CAS
PubMed
Google Scholar
Zhang C, She Q, Bi H, Whitaker RJ. The apt/6-methylpurine counterselection system and its applications in genetic studies of the hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol. 2016;82(10):3070–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean D. A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids. Gene. 1981;15(1):99–102.
Article
CAS
PubMed
Google Scholar
Maloy SR, Nunn WD. Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol. 1981;145(2):1110–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stacey KA, Simson E. Improved method for the isolation of the thymine-requiring mutants of Escherichia coli. J Bacteriol. 1965;90(2):554–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernard P, Gabant P, Bahassi EM, Couturier M. Positive-selection vectors using the F plasmid ccdB killer gene. Gene. 1994;148(1):71–4.
Article
CAS
PubMed
Google Scholar
Solem C, Defoor E, Jensen PR, Martinussen J. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol. 2008;74(15):4772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw AJ, Covalla SF, Hogsett DA, Herring CD. Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol. 2011;77(7):2534–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marx CJ, Lidstrom ME. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques. 2002;33(5):1062–7.
Article
CAS
PubMed
Google Scholar
Lee S-H, Kim HJ, Shin Y-A, Kim KH, Lee SJ. Single crossover-mediated markerless genome engineering in Clostridium acetobutylicum. J Microbiol Biotechnol. 2016;26(4):725–9.
Article
CAS
PubMed
Google Scholar
Tan X, Liang F, Cai K, Lu X. Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants. Appl Microbiol Biotechnol. 2013;97(14):6373–82.
Article
CAS
PubMed
Google Scholar
Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, et al. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol Biofuels. 2016;9(1):116.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tian L, Conway PM, Cervenka ND, Cui J, Maloney M, Olson DG, et al. Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. Biotechnol Biofuels. 2019;12(1):186.
Article
PubMed
PubMed Central
CAS
Google Scholar
Basen M, Geiger I, Henke L, Muller V. A genetic system for the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Appl Enviorn Microbiol. 2018. https://doi.org/10.1128/AEM.02210-17.
Article
Google Scholar
Li Z, Xiong B, Liu L, Li S, Xin X, Li Z, et al. Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory. J Ind Microbiol Biotechnol. 2019;46(6):783–90.
Article
CAS
PubMed
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97(12):6640–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis HM, Yu D, DiTizio T, Court DL. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci. 2001;98(12):6742–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X, Yang Y, Ling W, Zhuang H, Li Q, Shang G. Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol Lett. 2016;363(4):fnw014.
Article
PubMed
CAS
Google Scholar
Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, et al. A high efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol. 2015;99:5151–62.
Article
CAS
PubMed
Google Scholar
van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods. 2007;4(2):147–52.
Article
PubMed
CAS
Google Scholar
Dong H, Tao W, Gong F, Li Y, Zhang Y. A functional recT gene for recombineering of Clostridium. J Bacteriol. 2014;173:65–7.
CAS
Google Scholar
van Pijkeren JP, Britton RA. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 2012;40(10):e76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, et al. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun. 2020;10:e00116.
Article
PubMed
Google Scholar
Corts AD, Thomason LC, Gill RT, Gralnick JA. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Sci Rep. 2019;9(1):39.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages. Nat Rev Microbiol. 2008;6(11):851–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995;269(5222):400–3.
Article
CAS
PubMed
Google Scholar
Lampe DJ, Churchill ME, Robertson HM. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 1996;15(19):5470–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology. 1983;1(9):784.
Article
CAS
Google Scholar
van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods. 2009;6(10):767–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio. 2015;6(3):e00306-15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calero P, Jensen SI, Bojanovič K, Lennen RM, Koza A, Nielsen AT. Genome-wide identification of tolerance mechanisms toward p-coumaric acid in Pseudomonas putida. Biotechnol Bioeng. 2018;115(3):762–74.
Article
CAS
PubMed
Google Scholar
Curtis PD. Essential genes predicted in the genome of Rubrivivax gelatinosus. J Bacteriol. 2016;198(16):2244–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO. Re-engineering Escherichia coli for ethanol production. Biotechnol Lett. 2008;30(12):2097–103.
Article
CAS
PubMed
Google Scholar
Philipps G, de Vries S, Jennewein S. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii. Biotechnol Biofuels. 2019;12(1):112.
Article
PubMed
PubMed Central
Google Scholar
Inaba Y, Banerjee I, Kernan T, Banta S. Transposase-mediated chromosomal integration of exogenous genes in Acidithiobacillus ferrooxidans. Appl Environ Microbiol. 2018;84(21):e01381-e1418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Zhao Z, Ke J, Engel Y, Shi Y-M, Robinson D, et al. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat Microbiol. 2019;4(12):2498–510.
Article
PubMed
CAS
Google Scholar
Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods. 2005;2(6):443–8.
Article
CAS
PubMed
Google Scholar
Groth AC, Calos MP. Phage integrases: biology and applications. J Mol Biol. 2004;335(3):667–78.
Article
CAS
PubMed
Google Scholar
Chou Y-C, Linger J, Yang S, Zhang M. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate. Journal Biotechnol Biomater. 2015;5(NREL/JA-5100–64639).
Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol. 2007;73(4):1126–35.
Article
CAS
PubMed
Google Scholar
Langer SJ, Ghafoori AP, Byrd M, Leinwand L. A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Res. 2002;30(14):3067–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown WRA, Lee NCO, Xu Z, Smith MCM. Serine recombinases as tools for genome engineering. Methods. 2011;53(4):372–9.
Article
CAS
PubMed
Google Scholar
Elmore JR, Furches A, Wolff GN, Gorday K, Guss AM. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab Eng Comm. 2017;5:1–8.
Article
Google Scholar
Combes P, Till R, Bee S, Smith MC. The Streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol. 2002;184(20):5746–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guss AM, Rother M, Zhang JK, Kulkarni G, Metcalf WW. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea. 2008;2(3):193–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baltz RH. Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol. 2012;39(5):661–72.
Article
CAS
PubMed
Google Scholar
Huang H, Chai CS, Yang S, Jiang WH, Gu Y. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metab Eng. 2019;52:293–302.
Article
CAS
PubMed
Google Scholar
Ko B, D’Alessandro J, Douangkeomany L, Stumpf S, deButts A, Blodgett J. Construction of a new integrating vector from actinophage ϕOZJ and its use in multiplex Streptomyces transformation. J Ind Microbiol Biotechnol. 2019. https://doi.org/10.1007/s10295-019-02246-7.
Article
PubMed
Google Scholar
Baltz RH. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol. 2014;3(10):748–58.
Article
CAS
PubMed
Google Scholar
Bilyk B, Luzhetskyy A. Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol. 2014;98(11):5095–104.
Article
CAS
PubMed
Google Scholar
Zhang JJ, Moore BS, Tang X. Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters. Appl Microbiol Biotechnol. 2018;102(19):8437–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
Article
PubMed
PubMed Central
Google Scholar
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.
Article
CAS
PubMed
Google Scholar
Javed MR, Noman M, Shahid M, Ahmed T, Khurshid M, Rashid MH, et al. Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res. 2019;219:1–11.
Article
CAS
PubMed
Google Scholar
Vento JM, Crook N, Beisel CL. Barriers to genome editing with CRISPR in bacteria. J Ind Microbiol Biotechnol. 2019;46(9–10):1327–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat Biotechnol. 2013;31(3):233–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81(15):5103–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aparicio T, de Lorenzo V, Martínez-García E. CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J. 2018;13(5):e1700161.
Article
PubMed
CAS
Google Scholar
Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho BK. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth Biol. 2018;7(4):1085–94.
Article
CAS
PubMed
Google Scholar
Wasels F, Jean-Marie J, Collas F, Lopez-Contreras AM, Lopes FN. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods. 2017;140:5–11.
Article
CAS
PubMed
Google Scholar
Li K, Cai D, Wang Z, He Z, Chen S. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR–Cas9 nickase. Appl Environ Microbiol. 2018;84(6):e02608-e2617.
Article
PubMed
PubMed Central
Google Scholar
Ran FA, Hsu Patrick D, Lin C-Y, Gootenberg Jonathan S, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR–Cas System. Cell. 2015;163(3):759–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep. 2016;6(1):1–9.
Article
CAS
Google Scholar
Pyne ME, Bruder MR, Moo-Young M, Chung DA, Chou CP. Harnessing heterologous and endogenous CRISPR–Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep. 2016;6(1):1–15.
Article
CAS
Google Scholar
Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R. Genome editing using the endogenous type I CRISPR–Cas system in Lactobacillus crispatus. Proc Natl Acad Sci. 2019;116(32):15774–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: The CRISPR–Cas toolkit. Trends Biotechnol. 2016;34(7):575–87.
Article
CAS
PubMed
Google Scholar
Mougiakos I, Bosma EF, Ganguly J, van der Oost J, van Kranenburg R. Hijacking CRISPR–Cas for high-throughput bacterial metabolic engineering: advances and prospects. Curr Opin Biotechnol. 2018;50:146–57.
Article
CAS
PubMed
Google Scholar
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013;8(11):2180–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao L, Cengic I, Anfelt J, Hudson EP. Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol. 2016;5(3):207–12.
Article
CAS
PubMed
Google Scholar
Cleto S, Jensen JVK, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5(5):375–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C-H, Shen CR, Li H, Sung L-Y, Wu M-Y, Hu Y-C. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Fact. 2016;15(1):196.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP, et al. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol. 2017;13(5):931.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tao W, Lv L, Chen GQ. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Fact. 2017;16(1):48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peters JM, Koo B-M, Patino R, Heussler GE, Hearne CC, Qu J, et al. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat Microbiol. 2019;4(2):244–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 2013;41(15):7429–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG. Synthetic CRISPR–Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun. 2018;9(1):2489.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Wan X, Wang B. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nat Commun. 2019;10(1):3693.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Shen W, Huang J, Li R, Xiao Y, Wei H, et al. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnol Biofuels. 2019;12(1):52.
Article
PubMed
PubMed Central
Google Scholar
Jin L-Q, Jin W-R, Ma Z-C, Shen Q, Cai X, Liu Z-Q, et al. Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Appl Microbiol Biotechnol. 2019;103(21):8725–36.
Article
CAS
PubMed
Google Scholar
Luo Y, Zhang L, Barton KW, Zhao H. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol. 2015;4(9):1001–10.
Article
CAS
PubMed
Google Scholar
Glick BR. Metabolic load and heterologous gene expression. Biotechnol Adv. 1995;13(2):247–61.
Article
CAS
PubMed
Google Scholar
Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng. 2013;19:98–106.
Article
CAS
PubMed
Google Scholar
Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR. Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2014;98(6):2617–23.
Article
CAS
PubMed
Google Scholar
Mordaka PM, Heap JT. Stringency of synthetic promoter sequences in Clostridium revealed and circumvented by tuning promoter library mutation rates. ACS Synth Biol. 2018;7(2):672–81.
Article
CAS
PubMed
Google Scholar
Yang G, Jia D, Jin L, Jiang Y, Wang Y, Jiang W, et al. Rapid generation of universal synthetic promoters for controlled gene expression in both gas-fermenting and saccharolytic Closdridim species. ACS Synth Biol. 2017;6(9):1672–8.
Article
CAS
PubMed
Google Scholar
Englund E, Liang F, Lindberg P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep. 2016;6(1):36640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zobel S, Benedetti I, Eisenbach L, de Lorenzo V, Wierckx N, Blank LM. Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol. 2015;4(12):1341–51.
Article
CAS
PubMed
Google Scholar
Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993;262(5138):1407.
Article
CAS
PubMed
Google Scholar
Presnell KV, Flexer-Harrison M, Alper HS. Design and synthesis of synthetic UP elements for modulation of gene expression in Escherichia coli. Synth Syst Biotechnol. 2019;4(2):99–106.
Article
PubMed
PubMed Central
Google Scholar
Ross W, Aiyar SE, Salomon J, Gourse RL. Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol. 1998;180(20):5375–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phan TTP, Nguyen HD, Schumann W. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol. 2012;157(1):167–72.
Article
CAS
PubMed
Google Scholar
Zhang B, Zhou N, Liu Y-M, Liu C, Lou C-B, Jiang C-Y, et al. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Factor. 2015;14:71.
Article
CAS
Google Scholar
Sun T, Miao L, Li Q, Dai G, Lu F, Liu T, et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett. 2014;36(7):1515–22.
Article
CAS
PubMed
Google Scholar
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altenbuchner J. Editing of the Bacillus subtilis genome by the CRISPR–Cas9 system. Appl Environ Microbiol. 2016;82(17):5421–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan S-A, Nadler DC, Yokoo R, Savage DF. Biofuel metabolic engineering with biosensors. Curr Opin Chem Biol. 2016;35:150–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lo T-M, Chng SH, Teo WS, Cho H-S, Chang MW. A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Syst. 2016;3(2):133–43.
Article
CAS
PubMed
Google Scholar
Chubukov V, Desmarais JJ, Wang G, Chan LJG, Baidoo EE, Petzold CJ, et al. Engineering glucose metabolism of Escherichia coli under nitrogen starvation. NPJ Syst Biol Appl. 2017;3(1):1–7.
Article
Google Scholar
Burg JM, Cooper CB, Ye Z, Reed BR, Moreb EA, Lynch MD. Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. Curr Opin Chem Eng. 2016;14:121–36.
Article
Google Scholar
Zhang B, Zhou N, Liu Y-M, Liu C, Lou C-B, Jiang C-Y, et al. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Fact. 2015;14:71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodríguez-García A, Combes P, Pérez-Redondo R, Smith MCA, Smith MCM. Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res. 2005;33(9):e87-e.
Article
CAS
Google Scholar
Girbal L, Mortier-Barrière I, Raynaud F, Rouanet C, Croux C, Soucaille P. Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol. 2003;69(8):4985–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruegg TL, Pereira JH, Chen JC, DeGiovanni A, Novichkov P, Mutalik VK, et al. Jungle Express is a versatile repressor system for tight transcriptional control. Nat Commun. 2018;9(1):1–13.
CAS
Google Scholar
Mearls EB, Olson DG, Herring CD, Lynd LR. Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum. Appl Microbiol Biotechnol. 2015;99(18):7589–99.
Article
CAS
PubMed
Google Scholar
Nshogozabahizi JC, Aubrey KL, Ross JA, Thakor N. Applications and limitations of regulatory RNA elements in synthetic biology and biotechnology. J Appl Microbiol. 2019;127(4):968–84.
Article
CAS
PubMed
Google Scholar
Ma AT, Schmidt CM, Golden JW. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol. 2014;80(21):6704–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou LB, Zeng AP. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol. 2015;4(6):729–34.
Article
CAS
PubMed
Google Scholar
Jang S, Jang S, Xiu Y, Kang TJ, Lee S-H, Koffas MAG, et al. Development of artificial riboswitches for monitoring of naringenin in vivo. ACS Synth Biol. 2017;6(11):2077–85.
Article
CAS
PubMed
Google Scholar
Marcano-Velazquez JG, Lo J, Nag A, Maness P-C, Chou KJ. Developing riboswitch-mediated gene regulatory controls in thermophilic bacteria. ACS Synth Biol. 2019;8(4):633–40.
Article
CAS
PubMed
Google Scholar
Jin DJ, Burgess RR, Richardson JP, Gross CA. Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. Proc Natl Acad Sci USA. 1992;89(4):1453–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordeen SK, Green PP, Fowlkes DM. A rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase. DNA. 1987;6(2):173–8.
Article
CAS
PubMed
Google Scholar
Dürre P, Kuhn A, Gottwald M, Gottschalk G. Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Appl Microbiol Biotechnol. 1987;26(3):268–72.
Article
Google Scholar
Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, et al. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA. 2011;108(33):13752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Platteeuw C, Simons G, De Vos W. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol. 1994;60(2):587–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorn K. Genetically encoded fluorescent tags. Mol Biol Cell. 2017;28(7):848–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods. 2006;3(8):623–8.
Article
CAS
PubMed
Google Scholar
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26(5):1788–99.
Article
CAS
PubMed
Google Scholar
Jha RK, Narayanan N, Pandey N, Bingen JM, Kern TL, Johnson CW, et al. Sensor-enabled alleviation of product inhibition in chorismate pyruvate-lyase. ACS Synth Biol. 2019;8(4):775–86.
Article
CAS
PubMed
Google Scholar
Alvarez-Gonzalez G, Dixon N. Genetically encoded biosensors for lignocellulose valorization. Biotechnol Biofuels. 2019;12(1):246.
Article
PubMed
PubMed Central
Google Scholar
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng. 2018;50:173–91.
Article
CAS
PubMed
Google Scholar
Streett HE, Kalis KM, Papoutsakis ET. A strongly fluorescing anaerobic reporter and protein-tagging system for Clostridium organisms based on the fluorescence-activating and absorption-shifting tag protein (FAST). Appl Environ Microbiol. 2019;85(14):e00622-e719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monmeyran A, Thomen P, Jonquière H, Sureau F, Li C, Plamont M-A, et al. The inducible chemical-genetic fluorescent marker FAST outperforms classical fluorescent proteins in the quantitative reporting of bacterial biofilm dynamics. Sci Rep. 2018;8(1):10336.
Article
PubMed
PubMed Central
CAS
Google Scholar