Graça J. Suberin: the biopolyester at the frontier of plants. Front Chem. 2015. https://doi.org/10.3389/fchem.2015.00062.
Article
PubMed
PubMed Central
Google Scholar
Evert RF. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, Third Edition; 2006.
Delaux PM, Nanda AK, Mathe C, Sejalon-Delmas N, Dunand C. Molecular and biochemical aspects of plant terrestrialization. Perspect Plant Ecol. 2012;14(1):49–59.
Article
Google Scholar
Kosma DK, Molina I, Ohlrogge JB, Pollard M. Identification of an arabidopsis fatty Alcohol:Caffeoyl-Coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiol. 2012;160(1):237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era-New interest for an old polymer. Plant Sci. 2011;180(3):399–413.
Article
CAS
PubMed
Google Scholar
Franke R, Schreiber L. Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol. 2007;10(3):252–9.
Article
CAS
PubMed
Google Scholar
Franke RB, Dombrink I, Schreiber L. Suberin goes genomics: use of a short living plant to investigate a long lasting polymer. Front Plant Sci. 2012. https://doi.org/10.3389/fpls.2012.00004.
Article
PubMed
PubMed Central
Google Scholar
Pereira H. Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol. 1988;22(3):211–8.
Article
CAS
Google Scholar
Marques AV, Pereira H. On the determination of suberin and other structural components in cork from Quercus suber L. Ann Agron Inst. 1987:321–335.
Kolattukudy PE, Kronman K, Poulose AJ. Determination of structure and composition of suberin from the roots of carrot, parsnip, rutabaga, turnip, red beet, and sweet potato by combined gas-liquid chromatography and mass spectrometry. Plant Physiol. 1975;55(3):567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holloway PJ. Some variations in the composition of suberin from the cork layers of higher-plants. Phytochemistry. 1983;22(2):495–502.
Article
CAS
Google Scholar
Buurman P, Peterse F, Almendros Martin G. Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci. 2007;58(6):1330–47.
Article
CAS
Google Scholar
Sleutel S, Kader MA, Leinweber P, D’Haene K, De Neve S. Tillage management alters surface soil organic matter composition: a pyrolysis mass spectroscopy study. Soil Sci Soc Am J. 2007;71(5):1620–8.
Article
CAS
Google Scholar
Kolattukudy PE. Suberin from plants. Biopolymers Online 2005.
Suseela V, Tharayil N, Pendall E, Rao AM. Warming and elevated CO2 alter the suberin chemistry in roots of photosynthetically divergent grass species. AoB Plants. 2017, 9(5).
Huang Z, Davis MR, Condron LM, Clinton PW. Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biol Biochem. 2011;43(6):1341–9.
Article
CAS
Google Scholar
Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA. Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Change Biol. 2009;15(8):2003–19.
Article
Google Scholar
Baum C, Eckhardt KU, Hahn J, Weih M, Dimitriou I, Leinweber P. Impact of poplar on soil organic matter quality and microbial communities in arable soils. Plant, Soil Environ. 2013;59(3):95–100.
Article
CAS
Google Scholar
Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. P Natl Acad Sci USA. 2013;110(40):16283–16283.
Article
CAS
Google Scholar
Doblas VG, Geldner N, Barberon M. The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol. 2017;39:136–43.
Article
CAS
PubMed
Google Scholar
Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell. 2016;164(3):447–59.
Article
CAS
PubMed
Google Scholar
Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in arabidopsis. Plos Genet. 2009;5(5):e1000492.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lulai EC, Corsini DL. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol Mol Plant. 1998;53(4):209–22.
Article
CAS
Google Scholar
Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA. Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol. 2007;144(1):299–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lulai EC, Orr PH. Techniques for detecting and measuring developmental and maturational changes in tuber native periderm. Am Potato J. 1994;71(8):489–505.
Article
Google Scholar
Kotula L, Ranathunge K, Schreiber L, Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot. 2009;60(7):2155–67.
Article
CAS
PubMed
Google Scholar
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science. 2021;371(6525):eabd0695.
Article
PubMed
CAS
Google Scholar
Pollard M, Beisson F, Li YH, Ohlrogge JB. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci. 2008;13(5):236–46.
Article
CAS
PubMed
Google Scholar
Schreiber L. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci. 2010;15(10):546–53.
Article
CAS
PubMed
Google Scholar
vanDoorn WG, Stead AD. Abscission of flowers and floral parts. J Exp Bot. 1997;48(309):821–37.
Article
CAS
Google Scholar
Enstone DE, Peterson CA, Ma FS. Root endodermis and exodermis: Structure, function, and responses to the environment. J Plant Growth Regul. 2002;21(4):335–51.
Article
CAS
Google Scholar
Zeier J, Goll A, Yokoyama M, Karahara I, Schreiber L. Structure and chemical composition of endodermal and rhizodermal hypodermal walls of several species. Plant Cell Environ. 1999;22(3):271–9.
Article
CAS
Google Scholar
Bernards MA. Demystifying suberin. Can J Bot. 2002;80(3):227–40.
Article
CAS
Google Scholar
Jupp AP, Newman EI. Morphological and anatomical effects of severe Drought on the roots of Lolium-Perenne L. New Phytol. 1987;105(3):393–402.
Article
PubMed
Google Scholar
Reinhardt DH, Rost TL. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot. 1995;35(4):563–74.
Article
CAS
Google Scholar
Jackson PC, Taylor JM. Effects of organic acids on ion uptake and retention in barley roots. Plant Physiol. 1970;46(4):538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laanbroek HJ. Bacterial cycling of minerals that affect plant-growth in waterlogged soils—a review. Aquat Bot. 1990;38(1):109–25.
Article
Google Scholar
Armstrong J, Armstrong W. Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot. 2001;88(8):1359–70.
Article
CAS
PubMed
Google Scholar
Greenway H, Armstrong W, Colmer TD. Conditions leading to high CO2 (> 5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot-London. 2006;98(1):9–32.
Article
CAS
Google Scholar
Pozuelo JM, Espelie KE, Kolattukudy PE. Magnesium-deficiency results in increased suberization in endodermis and hypodermis of corn roots. Plant Physiol. 1984;74(2):256–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolattukudy PE, Agrawal VP. Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids. 1974;9(9):682–91.
Article
CAS
Google Scholar
Kolattukudy PE. Biopolyester membranes of plants: cutin and suberin. Science. 1980;208(4447):990–1000.
Article
CAS
PubMed
Google Scholar
Schmutz A, Jenny T, Amrhein N, Ryser U. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta. 1993;189(3):453–60.
Article
CAS
PubMed
Google Scholar
Graça J, Santos S. Suberin: a biopolyester of plants’ skin. Macromol Biosci. 2007;7(2):128–35.
Article
PubMed
CAS
Google Scholar
Moire L, Schmutz A, Buchala A, Yan B, Stark RE, Ryser U. Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol. 1999;119(3):1137–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Correia VG, Bento A, Pais J, Rodrigues R, Haliński ŁP, Frydrych M, Greenhalgh A, Stepnowski P, Vollrath F, King AWT, et al. The molecular structure and multifunctionality of the cryptic plant polymer suberin. Materials Today Bio. 2020;5:100039.
Article
CAS
PubMed
Google Scholar
Sitte P. Zum Feinbau der Suberinschichten im Flaschenkork. Protoplasma. 1962;54(4):555–9.
Article
Google Scholar
Lulai EC, Morgan WC. Histochemical probing of potato periderm with neutral red: a sensitive cytofluorochrome for the hydrophobic domain of suberin. Biotech Histochem. 1992;67(4):185–95.
Article
CAS
PubMed
Google Scholar
Lux A, Morita S, Abe J, Ito K. An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot-London. 2005;96(6):989–96.
Article
Google Scholar
Ursache R, Andersen TG, Marhavý P, Geldner N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 2018;93(2):399–412.
Article
CAS
PubMed
Google Scholar
Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J. 2020;102(3):431–47.
Article
CAS
PubMed
Google Scholar
Gou M, Hou G, Yang H, Zhang X, Cai Y, Kai G, Liu C-J. The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiol. 2017;173(2):1045.
Article
CAS
PubMed
Google Scholar
Marques AV, Pereira H. A methodological approach for the simultaneous quantification of glycerol and fatty acids from cork suberin in a single GC run. Phytochem Anal. 2019;30(6):687–99.
Article
CAS
PubMed
Google Scholar
Thiombiano B, Gontier E, Molinié R, Marcelo P, Mesnard F, Dauwe R. An untargeted liquid chromatography–mass spectrometry-based workflow for the structural characterization of plant polyesters. Plant J. 2020;102(6):1323–39.
Article
CAS
PubMed
Google Scholar
Qin L, Zhang Y, Liu Y, He H, Han M, Li Y, Zeng M, Wang X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. Phytochem Anal. 2018;29(4):351–64.
Article
CAS
PubMed
Google Scholar
Veličković D, Herdier H, Philippe G, Marion D, Rogniaux H, Bakan B. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer. Plant J. 2014;80(5):926–35.
Article
PubMed
CAS
Google Scholar
Marques AV, Pereira H. Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. J Anal Appl Pyrol. 2013;100:88–94.
Article
CAS
Google Scholar
Liang S, McDonald AG. Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem. 2014;62(33):8421–9.
Article
CAS
PubMed
Google Scholar
António Velez M, Jorge R, Ana G, José CDR, Helena P. Ferulates and lignin structural composition in cork. Holzforschung. 2016;70(4):275–89.
Article
CAS
Google Scholar
Monreal CM, Schulten HR, Kodama H. Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol. Can J Soil Sci. 1997;77(3):379–88.
Article
Google Scholar
Kiersch K, Kruse J, Eckhardt K-U, Fendt A, Streibel T, Zimmermann R, Broll G, Leinweber P. Impact of grassland burning on soil organic matter as revealed by a synchrotron- and pyrolysis–mass spectrometry-based multi-methodological approach. Org Geochem. 2012;44:8–20.
Article
CAS
Google Scholar
Derenne S, Quenea K. Analytical pyrolysis as a tool to probe soil organic matter. J Anal Appl Pyrol. 2015;111:108–20.
Article
CAS
Google Scholar
Melnitchouck A, Leinweber P, Broer I, Eckhardt K-U. Pyrolysis-field ionization mass spectrometry of rhizodeposits—a new approach to identify potential effects of genetically modified plants on soil organisms. Environ Biosaf Res. 2006;5(1):37–46.
Article
CAS
Google Scholar
Nierop KGJ. Temporal and vertical organic matter differentiation along a vegetation succession as revealed by pyrolysis and thermally assisted hydrolysis and methylation. J Anal Appl Pyrol. 2001;61(1):111–32.
Article
CAS
Google Scholar
Estournel-Pelardy C, El-Mufleh Al Husseini A, Doskočil L, Grasset L. A two-step thermochemolysis for soil organic matter analysis. Application to lipid-free organic fraction and humic substances from an ombrotrophic peatland. J Anal Appl Pyrolysis. 2013;104:103–10.
Article
CAS
Google Scholar
Jeannotte R, Hamel C, Jabaji S, Whalen JK. Pyrolysis-mass spectrometry and gas chromatography-flame ionization detection as complementary tools for soil lipid characterization. J Anal Appl Pyrol. 2011;90(2):232–7.
Article
CAS
Google Scholar
Plante AF, Magrini-Bair K, Vigil M, Paul EA. Pyrolysis-molecular beam mass spectrometry to characterize soil organic matter composition in chemically isolated fractions from diVering land uses. Biogeochemistry. 2009;92:145–61.
Article
CAS
Google Scholar
Haddix ML, Magrini-Bair K, Evans RJ, Conant RT, Wallenstein MD, Morris SJ, Calderón F, Paul EA. Progressing towards more quantitative analytical pyrolysis of soil organic matter using molecular beam mass spectroscopy of whole soils and added standards. Geoderma. 2016;283:88–100.
Article
CAS
Google Scholar
Garbow JR, Ferrantello LM, Stark RE. 13C nuclear magnetic resonance study of suberized potato cell wall. Plant Physiol. 1989;90(3):783–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stark RE, Garbow JR. Nuclear magnetic resonance relaxation studies of plant polyester dynamics. 2. Suberized potato cell wall. Macromolecules. 1992;25:149–54.
Article
CAS
Google Scholar
Gil AM, Lopes M, Rocha J, Pascoal Neto C. A 13C solid state nuclear magnetic resonance spectroscopic study of cork cell wall structure: the effect of suberin removal. Int J Biol Macromol. 1997;20(4):293–305.
Article
CAS
PubMed
Google Scholar
Yan B, Stark RE. A WISE NMR approach to heterogeneous biopolymer mixtures: dynamics and domains in wounded potato tissues. Macromolecules. 1998;31(8):2600–5.
Article
CAS
Google Scholar
Lopes MH, Gil AM, Silvestre AJD, Neto CP. Composition of suberin extracted upon gradual alkaline methanolysis of Quercus suber L. cork. J Agric Food Chem. 2000;48:383–91.
Article
CAS
PubMed
Google Scholar
Santos S, Cabral V, Graça J. Cork suberin molecular structure: stereochemistry of the C18 epoxy and vic-diol ω-hydroxyacids and α, ω-Diacids Analyzed by NMR. J Agric Food Chem. 2013;61(29):7038–47.
Article
CAS
PubMed
Google Scholar
Yan B, Stark RE. Biosynthesis, molecular structure, and domain architecture of potato suberin: a 13C NMR study using isotopically labeled precursors. J Agric Food Chem. 2000;48(8):3298–304.
Article
CAS
PubMed
Google Scholar
Stark RE, Sohn W, Pacchiano RA Jr, Al-Bashir M, Garbow JR. Following suberization in potato wound periderm by histochemical and solid-state 13C nuclear magnetic resonance methods. Plant Physiol. 1994;104(2):527–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pacchiano RA, Sohn W, Chlanda VL, Garbow JR, Stark RE. Isolation and spectral characterization of plant-cuticle polyesters. J Agric Food Chem. 1993;41:78–83.
Article
CAS
Google Scholar
Arrieta-Baez D, Stark RE. Using trifluoroacetic acid to augment studies of potato suberin molecular structure. J Agr Food Chem. 2006;54(26):9636–41.
Article
CAS
Google Scholar
Yu B, Vengadesan G, Wang H, Jashi L, Yefremov T, Tian S, Gaba V, Shomer I, Stark RE. Magic-angle spinning NMR studies of cell wall bound aromatic−aliphatic biopolyesters associated with strengthening of intercellular adhesion in potato (Solanum tuberosum L.) tuber parenchyma. Biomacromol. 2006;7(3):937–44.
Article
CAS
Google Scholar
Sumiyoshi Y, Crow SE, Litton CM, Deenik JL, Taylor AD, Turano B, Ogoshi R. Belowground impacts of perennial grass cultivation for sustainable biofuel feedstock production in the tropics. GCB Bioenergy. 2017;9(4):694–709.
Article
CAS
Google Scholar
Gandini A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules. 2008;41(24):9491–504.
Article
CAS
Google Scholar
Pinto PCRO, Sousa AR, Silvestre AJD, Neto CP, Gandini A, Eckerman C, Holmbom B. Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study. Ind Crop Prod. 2009;29(1):126–32.
Article
CAS
Google Scholar
Kumaniaev I, Samec JSM. Valorization of Quercus suber Bark toward Hydrocarbon Bio-Oil and 4-Ethylguaiacol. ACS Sustainable Chemistry & Engineering. 2018;6(5):5737–42.
Article
CAS
Google Scholar
Feng S, Cheng S, Yuan Z, Leitch M, Xu C. Valorization of bark for chemicals and materials: a review. Renew Sustain Energy Rev. 2013;26:560–78.
Article
CAS
Google Scholar
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50(2):347–63.
Article
CAS
PubMed
Google Scholar
Rains MK, de Silva NDG, Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiol. 2018;38(3):340–61.
Article
CAS
PubMed
Google Scholar
Vishwanath SJ, Delude C, Domergue F, Rowland O. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 2015;34(4):573–86.
Article
CAS
PubMed
Google Scholar
Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot. 2008;59(9):2347–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li YH, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA. 2007;104(46):18339–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol. 2009;150(4):1831–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M. CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol. 2009;149(2):1050–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol. 2008;67(5):547–66.
Article
CAS
PubMed
Google Scholar
Todd J, Post-Beittenmiller D, Jaworski JG. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 1999;17(2):119–30.
Article
CAS
PubMed
Google Scholar
Trenkamp S, Martin W, Tietjen K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci USA. 2004;101(32):11903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blacklock BJ, Jaworski JG. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Commun. 2006;346(2):583–90.
Article
CAS
PubMed
Google Scholar
Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM. Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem. 2006;281(14):9018–29.
Article
CAS
PubMed
Google Scholar
Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J. 2009;60(3):462–75.
Article
CAS
PubMed
Google Scholar
Franke R, Höfer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L. The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J. 2009;57(1):80–95.
Article
CAS
PubMed
Google Scholar
Domergue F, Vishwanath SJ, Joubes J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R, et al. Three arabidopsis fatty acyl-coenzyme a reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol. 2010;153(4):1539–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M. Identification of an arabidopsis feruloyl-coenzyme a transferase required for suberin synthesis. Plant Physiol. 2009;151(3):1317–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gou JY, Yu XH, Liu CJ. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proc Natl Acad Sci U S A. 2009;106(44):18855–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernards MA, Lopez ML, Zajicek J, Lewis NG. Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem. 1995;270(13):7382–6.
Article
CAS
PubMed
Google Scholar
Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M. A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J. 2010;62(2):277–90.
Article
CAS
PubMed
Google Scholar
Cheng AX, Gou JY, Yu XH, Yang HJ, Fang X, Chen XY, Liu CJ. Characterization and ectopic expression of a populus hydroxyacid hydroxycinnamoyltransferase. Mol Plant. 2013;6(6):1889–903.
Article
CAS
PubMed
Google Scholar
Farmer MJ, Czernic P, Michael A, Negrel J. Identification and characterization of cDNA clones encoding hydroxycinnamoyl-CoA: tyramine N-hydroxycinnamoyltransferase from tobacco. Eur J Biochem. 1999;263(3):686–94.
Article
CAS
PubMed
Google Scholar
Negrel J, Javelle F, Paynot M. Wound-induced tyramine hydroxycinnamoyl transferase in potato (Solanum-Tuberosum) tuber disks. J Plant Physiol. 1993;142(5):518–24.
Article
CAS
Google Scholar
Schmidt A, Grimm R, Schmidt J, Scheel D, Strack D, Rosahl S. Cloning and expression of a potato cDNA encoding hydroxycinnamoyl-CoA : Tyramine N-(hydroxycinnamoyl)transferase. J Biol Chem. 1999;274(7):4273–80.
Article
CAS
PubMed
Google Scholar
Lee DE, Kang K, Lee SG, Back K. Enhanced synthesis of feruloyltyramine and 4-coumaroyltyramine is associated with tyramine availability in transgenic rice expressing pepper tyramine N-hydroxycinnamoyltransferase. Plant Sci. 2007;172(1):57–63.
Article
CAS
Google Scholar
Woolfson KN, Haggitt ML, Zhang YN, Kachura A, Bjelica A, Rincon MAR, Kaberi KM, Bernards MA. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (Solanum tuberosum L.) tubers. Plant J. 2018;93(5):931–42.
Article
CAS
PubMed
Google Scholar
Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol. 2003;21(10):1215–21.
Article
CAS
PubMed
Google Scholar
Pighin JA, Zheng HQ, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL. Plant cuticular lipid export requires an ABC transporter. Science. 2004;306(5696):702–4.
Article
CAS
PubMed
Google Scholar
Shanmugarajah K, Linka N, Grafe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep. 2019;9:1–12.
Article
CAS
Google Scholar
Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M, Sonnewald S, Weigel B, Frolova N, Strehmel N, Hause G, et al. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell. 2014;26(8):3403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cottle W, Kolattukudy PE. Abscisic-acid stimulation of suberization—induction of enzymes and deposition of polymeric components and associated waxes in tissue-cultures of potato-tuber. Plant Physiol. 1982;70(3):775–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdaguer R, Soler M, Serra O, Garrote A, Fernandez S, Company-Arumi D, Antico E, Molinas M, Figueras M. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. J Exp Bot. 2016;67(18):5415–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Trainotti L, Schreiber L, et al. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell. 2016;28(9):2097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legay S, Guerriero G, André C, Guignard C, Cocco E, Charton S, Boutry M, Rowland O, Hausman J-F. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytol. 2016;212(4):977–91.
Article
CAS
PubMed
Google Scholar
Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, Rowland O. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J. 2014;80(2):216–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueiredo R, Llerena JPP, Kiyota E, Ferreira SS, Cardeli BR, de Souza SCR, Brito MD, Sodek L, Cesarino I, Mazzafera P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. Plant Mol Biol. 2020;104(4–5):411–27.
Article
CAS
PubMed
Google Scholar
Beisson F, Li YH, Bonaventure G, Pollard M, Ohlrogge JB. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell. 2007;19(1):351–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell. 2007;19(4):1278–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson RB, Mooney HA, Schulze ED. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci. 1997;94(14):7362.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015;207(3):505–18.
Article
PubMed
Google Scholar
Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil. 2009;321(1–2):5–33.
Article
CAS
Google Scholar
Robbins NE, Dinneny JR. Growth is required for perception of water availability to pattern root branches in plants. Proc Natl Acad Sci. 2018;115(4):E822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nie M, Lu M, Bell J, Raut S, Pendall E. Altered root traits due to elevated CO2: a meta-analysis. Global Ecol Biogeogr. 2013;22(10):1095–105.
Article
Google Scholar
Carrillo Y, Dijkstra FA, LeCain D, Morgan JA, Blumenthal D, Waldron S, Pendall E. Disentangling root responses to climate change in a semiarid grassland. Oecologia. 2014;175(2):699–711.
Article
PubMed
Google Scholar
Angst G, John S, Mueller CW, Kogel-Knabner I, Rethemeyer J. Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. Sci Rep. 2016. https://doi.org/10.1038/srep29478.
Article
PubMed
PubMed Central
Google Scholar
Angst G, Heinrich L, Kögel-Knabner I, Mueller CW. The fate of cutin and suberin of decaying leaves, needles and roots—Inferences from the initial decomposition of bound fatty acids. Org Geochem. 2016;95:81–92.
Article
CAS
Google Scholar
Mendez-Millan M, Dignac MF, Rumpel C, Rasse DP, Derenne S. Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance C-13 labelling. Soil Biol Biochem. 2010;42(2):169–77.
Article
CAS
Google Scholar
Ji H, Ding Y, Liu X, Li L, Zhang D, Li Z, Sun J, Lashari MS, Joseph S, Meng Y, et al. Root-derived short-chain suberin diacids from rice and rape seed in a paddy soil under rice cultivar treatments. PLoS ONE. 2015;10(5):e0127474.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rossi A. Fuel characteristics of wood and nonwood biomass fuels. In: Tillman DA, Jahn EC, editors. Progress in biomass conversion, vol 5. New York: Elsevier; 1984. p. 69–99.
Google Scholar
Zhao Q, Mäkinen M, Haapala A, Jänis J. Thermochemical conversion of birch bark by temperature-programmed slow pyrolysis with fractional condensation. J Anal Appl Pyrol. 2020;150:104843.
Article
CAS
Google Scholar
Edmunds CW, Reyes Molina EA, André N, Hamilton C, Park S, Fasina O, Adhikari S, Kelley SS, Tumuluru JS, Rials TG, et al. Blended feedstocks for thermochemical conversion: biomass characterization and bio-oil production from switchgrass-pine residues blends. Front Energy Res. 2018. https://doi.org/10.3389/fenrg.2018.00079.
Article
Google Scholar
Ren X, Meng J, Chang J, Kelley SS, Jameel H, Park S. Effect of blending ratio of loblolly pine wood and bark on the properties of pyrolysis bio-oils. Fuel Process Technol. 2017;167:43–9.
Article
CAS
Google Scholar
Wang Z, Burra KG, Zhang M, Li X, Policella M, Lei T, Gupta AK. Co-pyrolysis of waste tire and pine bark for syngas and char production. Fuel. 2020;274:117878.
Article
CAS
Google Scholar
Wang Z, Cáceres LA, Hossain MM, Abdallah SB, Ogbeide O, Yao Z, Renaud JB, Scott IM. The antioxidant and enzyme inhibitory activity of balsam fir (Abies balsamea (L.) Mill.) bark solvent extracts and pyrolysis oil. Waste and Biomass Valorization. 2019;10(11):3295–306.
Article
CAS
Google Scholar
Garrett MD, Bennett SC, Hardacre C, Patrick R, Sheldrake GN. New methods in biomass depolymerisation: catalytic hydrogenolysis of barks. RSC Adv. 2013;3(44):21552–7.
Article
CAS
Google Scholar
McCallum CS, Strachan N, Bennett SC, Forsythe WG, Garrett MD, Hardacre C, Morgan K, Sheldrake GN. Catalytic depolymerisation of suberin rich biomass with precious metal catalysts. Green Chem. 2018;20(12):2702–5.
Article
CAS
Google Scholar
Vangeel T, Renders T, Van Aelst K, Cooreman E, Van den Bosch S, Van den Bossche G, Koelewijn SF, Courtin CM, Sels BF. Reductive catalytic fractionation of black locust bark. Green Chem. 2019;21(21):5841–51.
Article
CAS
Google Scholar
Kim KH, Tucker M, Nguyen Q. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Biores Technol. 2005;96(11):1249–55.
Article
CAS
Google Scholar
Mateus MM, Guerreiro D, Ferreira O, Bordado JC, Galhano dos Santos R. Heuristic analysis of Eucalyptus globulus bark depolymerization via acid-liquefaction. Cellulose. 2017;24(2):659–68.
Article
CAS
Google Scholar
Kumaniaev I, Navare K, Crespo Mendes N, Placet V, Van Acker K, Samec JSM. Conversion of birch bark to biofuels. Green Chem. 2020;22(7):2255–63.
Article
CAS
Google Scholar
Liu Q, Chmely SC, Abdoulmoumine N. Biomass treatment strategies for thermochemical conversion. Energy Fuels. 2017;31(4):3525–36.
Article
CAS
Google Scholar
Lesley JP, Peter EL, Marcia SP. Chemical constituents of black locust bark and their biocidal activity. Holzforschung. 1989;43(4):219–24.
Article
Google Scholar
Garlock RJ, Wong YS, Balan V, Dale BE. AFEX pretreatment and enzymatic conversion of black locust (Robinia pseudoacacia L.) to Soluble Sugars. BioEnergy Res. 2012;5(2):306–18.
Article
CAS
Google Scholar
Figueiredo R, Cesarino I, Mazzafera P. Suberin as an extra barrier to grass digestibility: a closer look to sugarcane forage. Tropical Plant Biology. 2016;9(2):96–108.
Article
CAS
Google Scholar
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: a biotechnological perspective. Food Energy Security. 2019;8(3):e00163.
Article
Google Scholar
Pérez-Boada M, Prieto A, Prinsen P, Forquin-Gomez M-P, del Río JC, Gutiérrez A, Martínez ÁT, Faulds CB. Enzymatic degradation of Elephant grass (Pennisetum purpureum) stems: Influence of the pith and bark in the total hydrolysis. Biores Technol. 2014;167:469–75.
Article
CAS
Google Scholar
Liang S, McDonald AG. Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste Manage. 2015;46:197–200.
Article
CAS
Google Scholar
Moncada J, Cardona CA, Higuita JC, Vélez JJ, López-Suarez FE. Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, techno-economic and environmental assessments. Chem Eng Sci. 2016;140:309–18.
Article
CAS
Google Scholar
Li C, Aston JE, Lacey JA, Thompson VS, Thompson DN. Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew Sustain Energy Rev. 2016;65:525–36.
Article
CAS
Google Scholar
Rasi S, Kilpeläinen P, Rasa K, Korpinen R, Raitanen J-E, Vainio M, Kitunen V, Pulkkinen H, Jyske T. Cascade processing of softwood bark with hot water extraction, pyrolysis and anaerobic digestion. Biores Technol. 2019;292:121893.
Article
CAS
Google Scholar
Williams CL, Emerson RM, Hernandez S, Klinger JL, Fillerup EP, Thomas BJ. Preprocessing and hybrid biochemical/thermochemical conversion of short rotation woody coppice for biofuels. Front Energy Res. 2018. https://doi.org/10.3389/fenrg.2018.00074.
Article
Google Scholar
Cohen H, Szymanski J, Aharoni A. Assimilation of ‘omics’ strategies to study the cuticle layer and suberin lamellae in plants. J Exp Bot. 2017;68(19):5389–400.
Article
CAS
PubMed
Google Scholar
Kalluri UC, Yang X, Wullschleger SD. Plant biosystems design for a carbon-neutral bioeconomy. BioDesign Res. 2020;2020:7914051.
Article
Google Scholar
Wang T, Phyo P, Hong M. Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl Magn Reson. 2016;78:56–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Fernando LD, Kirui A, Deligey F, Wang T. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nucl Magn Reson. 2020;107:101660.
Article
CAS
PubMed
Google Scholar
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protocols. 2012;7(9):1579–89.
Article
CAS
PubMed
Google Scholar
Wang W, Tian S, Stark RE. Isolation and identification of triglycerides and ester oligomers from partial degradation of potato Suberin. J Agric Food Chem. 2010;58(2):1040–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Decker SR, Harman-Ware AE, Happs RM, Wolfrum EJ, Tuskan GA, Kainer D, Oguntimein GB, Rodriguez M, Weighill D, Jones P, et al. High throughput screening technologies in biomass characterization. Front Energy Res. 2018. https://doi.org/10.3389/fenrg.2018.00120.
Article
Google Scholar
Delude C, Vishwanath SJ, Rowland O, Domergue F. Root aliphatic suberin analysis using non-extraction or solvent-extraction methods. Bio-protocol. 2017;7(12):e2331.
Article
PubMed
PubMed Central
Google Scholar
Elle O, Richter R, Vohland M, Weigelt A. Fine root lignin content is well predictable with near-infrared spectroscopy. Sci Rep-Uk. 2019;9(1):6396.
Article
CAS
Google Scholar
Payne CE, Wolfrum EJ. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnol Biofuels. 2015;8(1):43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Armas-Herrera CM, Dignac MF, Rumpel C, Arbelo CD, Chabbi A. Management effects on composition and dynamics of cutin and suberin in topsoil under agricultural use. Eur J Soil Sci. 2016;67(4):360–73.
Article
CAS
Google Scholar
Perra B, Haluk JP, Metche M. IR, 1H and 13C NMR Spectroscopic Studies of Suberin from Beech Barks (Fagus sylvatica L.). Holzforschung. 1995;49:99–103.
Article
CAS
Google Scholar
Serra O, Chatterjee S, Huang W, Stark RE. Mini-review: What nuclear magnetic resonance can tell us about protective tissues. Plant Sci. 2012;195:120–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graça J, Pereira H. Cork Suberin: a Glyceryl Based Polyester. Holzforschung. 1997;51(3):225–34.
Article
Google Scholar
Bernards MA, Razem FA. The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer. Phytochemistry. 2001;57(7):1115–22.
Article
CAS
PubMed
Google Scholar
Bernards MA, Lewis NG. The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry. 1998;47(6):915–33.
Article
CAS
PubMed
Google Scholar
Mattinen M-L, Filpponen I, Järvinen R, Li B, Kallio H, Lehtinen P, Argyropoulos D. Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum var. Nikola). J Agric Food Chem. 2009;57(20):9747–53.
Article
CAS
PubMed
Google Scholar
Marques AV, Rencoret J, Gutiérrez A, del Río JC, Pereira H. Ferulates and lignin structural composition in cork. Holzforschung. 2016;70(4):275–89.
Article
CAS
Google Scholar
Graça J. Hydroxycinnamates in suberin formation. Phytochem Rev. 2010;9(1):85–91.
Article
CAS
Google Scholar
Neto CP, Rocha J, Gil A, Cordeiro N, Esculcas AP, Rocha S, Delgadillo I, De Jesus JDP, Correia AJF. 13C solid-state nuclear magnetic resonance and Fourier transform infrared studies of the thermal decomposition of cork. Solid State Nucl Magn Reson. 1995;4(3):143–51.
Article
Google Scholar
Mahmood K, Zeisler-Diehl VV, Schreiber L, Bi Y-M, Rothstein SJ, Ranathunge K. Overexpression of ANAC046 Promotes Suberin Biosynthesis in Roots of Arabidopsis thaliana. Int J Mol Sci. 2019;20(24):6117.
Article
CAS
PubMed Central
Google Scholar
Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell. 2014;26(9):3569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verdaguer R, Soler M, Serra O, Garrote A, Fernández S, Company-Arumí D, Anticó E, Molinas M, Figueras M. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. J Exp Bot. 2016;67(18):5415–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capote T, Barbosa P, Usié A, Ramos AM, Inácio V, Ordás R, Gonçalves S, Morais-Cecílio L. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC Plant Biol. 2018;18(1):198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant. 2010;3(3):563–75.
Article
CAS
PubMed
Google Scholar
Wei X, Lu W, Mao L, Han X, Wei X, Zhao X, Xia M, Xu C. ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit. J Exp Bot. 2019;71(1):305–17.
Article
PubMed Central
CAS
Google Scholar
Lee SB, Suh M-C. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis. Plant J. 2018;96(6):1206–17.
Article
CAS
PubMed
Google Scholar
To A, Joubès J, Thueux J, Kazaz S, Lepiniec L, Baud S. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana. Plant J. 2020;103(2):660–76.
Article
CAS
PubMed
Google Scholar
Pfister A, Barberon M, Alassimone J, Kalmbach L, Lee Y, Vermeer JE, Yamazaki M, Li G, Maurel C, Takano J, et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. Elife. 2014;3:e03115.
Article
PubMed
PubMed Central
Google Scholar