Lau JM, McNeil M, Darvill AG, Albersheim P. Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants. Carbohydr Res. 1985;137 C:111–25.
Article
Google Scholar
Leclere L, Van CP, Michiels C. Anti-cancer activities of pH- or heat-modified pectin. Front Pharmacol. 2013;4:1–8.
Article
CAS
Google Scholar
Voragen AGJ, Coenen G-J, Verhoef RP, Schols HA. Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem. 2009;20:263–75.
Article
CAS
Google Scholar
Hahn M, Darvill A, Albersheim P. Host-pathogen interactions. Plant Physiol. 1981;68:1161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and pectin-based composite materials: beyond food texture. Molecules. 2018;23:942.
Article
PubMed Central
CAS
Google Scholar
Wang D, Yeats TH, Uluisik S, Rose JKC, Seymour GB. Fruit softening: revisiting the role of pectin. Trends Plant Sci. 2018;23:302–10. https://doi.org/10.1016/j.tplants.2018.01.006.
Article
CAS
PubMed
Google Scholar
Zhang W, Xu P, Zhang H. Pectin in cancer therapy: a review. Trends Food Sci Technol. 2015;44:258–71. https://doi.org/10.1016/j.tifs.2015.04.001.
Article
CAS
Google Scholar
Luppi B, Bigucci F, Abruzzo A, Corace G, Cerchiara T, Zecchi V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm. 2010;75:381–7. https://doi.org/10.1016/j.ejpb.2010.04.013.
Article
CAS
PubMed
Google Scholar
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.
Article
CAS
Google Scholar
Jenkins J, Lo Leggio L, Harris G, Pickersgill R. β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes wit 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Lett. 1995;362:281–5.
Article
CAS
PubMed
Google Scholar
Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995;3:853–9.
Article
CAS
PubMed
Google Scholar
de Lima EA, Machado CB, Zanphorlin LM, Ward RJ, Sato HH, Ruller R. GH53 endo-beta-1,4-galactanase from a newly isolated Bacillus licheniformis CBMAI 1609 as an enzymatic cocktail supplement for biomass saccharification. Appl Biochem Biotechnol. 2016;179:415–26. https://doi.org/10.1007/s12010-016-2003-1.
Article
CAS
PubMed
Google Scholar
Knap I, Kofod L, Ohmann A. WO1997016982A1; 1997.
Thomassen LV, Vigsnæs LK, Licht TR, Mikkelsen JD, Meyer AS. Maximal release of highly bifidogenic soluble dietary fibers from industrial potato pulp by minimal enzymatic treatment. Appl Microbiol Biotechnol. 2011;90:873–84.
Article
CAS
PubMed
Google Scholar
Van Bueren AL, Mulder M, Van Leeuwen S, Dijkhuizen L. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Sci Rep. 2017;7:1–13. https://doi.org/10.1038/srep40478.
Article
CAS
Google Scholar
Le Nours J, Ryttersgaard C, Lo Leggio L, Østergaard PR, Borchert TV, Christensen LLH, et al. Structure of two fungal β-1,4-galactanases: Searching for the basis for temperature and pH optimum. Protein Sci. 2003;12:1195–204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryttersgaard C, Lo Leggio L, Coutinho PM, Henrissat B, Larsen S. Aspergillus aculeatus β-1,4-galactanase: substrate recognition and relations to other glycoside hydrolases in clan GH-A. Biochemistry. 2002;41:15135–43.
Article
CAS
PubMed
Google Scholar
Otten H, Michalak M, Mikkelsen JD, Larsen S. The binding of zinc ions to Emericella nidulans endo-β-1,4-galactanase is essential for crystal formation. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013;69:850–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Nours J, De Maria L, Welner D, Jørgensen CT, Christensen LLH, Borchert TV, et al. Investigating the binding of β-1,4-galactan to Bacillus licheniformis β-1,4-galactanase by crystallography and computational modeling. Proteins Struct Funct Bioinforma. 2009;75:977–89.
Article
CAS
Google Scholar
Ryttersgaard C, Le Nours J, Lo Leggio L, Jørgensen CT, Christensen LLH, Bjørnvad M, et al. The structure of endo-β-1,4-galactanase from Bacillus licheniformis in complex with two oligosaccharide products. J Mol Biol. 2004;341:107–17.
Article
CAS
PubMed
Google Scholar
Böger M, Hekelaar J, van Leeuwen SS, Dijkhuizen L, Lammerts van Bueren A. Structural and functional characterization of a family GH53 β-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. J Struct Biol. 2019;205:1–10. https://doi.org/10.1016/j.jsb.2018.12.002.
Article
CAS
PubMed
Google Scholar
Torpenholt S, Le Nours J, Christensen U, Jahn M, Withers S, Østergaard PR, et al. Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydr Res. 2011;346:2028–33. https://doi.org/10.1016/j.carres.2011.05.017.
Article
CAS
PubMed
Google Scholar
Torpenholt S, Poulsen JCN, Muderspach SJ, De Maria L, Lo LL. Structure of Aspergillus aculeatus β-1,4-galactanase in complex with galactobiose. Acta Crystallogr Sect F. 2019;75:399–404.
Article
CAS
Google Scholar
Michalak M, Thomassen LV, Roytio H, Ouwehand AC, Meyer AS, Mikkelsen JD. Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme Microb Technol. 2012;50:121–9. https://doi.org/10.1016/j.enzmictec.2011.11.001.
Article
CAS
PubMed
Google Scholar
Lemaire A, Duran Garzon C, Perrin A, Habrylo O, Trezel P, Bassard S, et al. Three novel rhamnogalacturonan I-pectins degrading enzymes from Aspergillus aculeatinus: biochemical characterization and application potential. Carbohydr Polym. 2020;248:116752. https://doi.org/10.1016/j.carbpol.2020.116752.
Article
CAS
PubMed
Google Scholar
Christgau S, Sandal T, Kofod LV, Dalbøge H. Expression cloning, purification and characterization of a β-1,4-galactanase from Aspergillus aculeatus. Curr Genet. 1995;27:135–41.
Article
CAS
PubMed
Google Scholar
Niederberger TD, Götz DK, McDonald IR, Ronimus RS, Morgan HW. Ignisphaera aggregans gen. nov., sp. Nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol. 2006;56:965–71.
Article
CAS
PubMed
Google Scholar
Torpenholt S, De Maria L, Olsson MHM, Christensen LH, Skjøt M, Westh P, et al. Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase. Comput Struct Biotechnol J. 2015;13:256–64. https://doi.org/10.1016/j.csbj.2015.03.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vries RP, Parenicová L, Hinz SWA, Kester HCM, Beldman G, Benen JAE, et al. The β-1,4-endogalactanase A gene from Aspergillus niger is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions. Eur J Biochem. 2002;269:4985–93.
Article
PubMed
CAS
Google Scholar
Petsko GA. Structural basis of thermostability in hyperthermophilic proteins, or “there’s more than one way to skin a cat.” Methods Enzymol. 2001;334:469–78.
Article
CAS
PubMed
Google Scholar
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
den Dunnen JT, Antonarakis E. Nomenclature for the description of human sequence variations. Hum Genet. 2001;109:121–4.
Article
CAS
Google Scholar
Szilágyi A, Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure. 2000;8:493–504.
Article
PubMed
Google Scholar
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol. 2020;40:83–98. https://doi.org/10.1080/07388551.2019.1682963.
Article
CAS
PubMed
Google Scholar
Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, et al. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J Mol Biol. 1998;284:101–24.
Article
CAS
PubMed
Google Scholar
Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K. Origin of attraction and directionality of the π/π interaction: model chemistry calculations of benzene dimer interaction. J Am Chem Soc. 2002;124:104–12.
Article
CAS
PubMed
Google Scholar
Gallivan JP, Dougherty DA. Cation-π interactions in structural biology. Proc Natl Acad Sci U S A. 1999;96:9459–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase (80-). Science. 1995;267:1463–9.
Article
CAS
PubMed
Google Scholar
Larsen DM, Nyffenegger C, Swiniarska MM, Thygesen A, Strube ML, Meyer AS, et al. Thermostability enhancement of an endo-1,4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Appl Microbiol Biotechnol. 2015;99:4245–53.
Article
CAS
PubMed
Google Scholar
Huang JW, Chen CC, Huang CH, Huang TY, Wu TH, Cheng YS, et al. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochim Biophys Acta Proteins Proteom. 2014;1844:663–9. https://doi.org/10.1016/j.bbapap.2014.01.011.
Article
CAS
Google Scholar
Hekmat O, Lo Leggio L, Rosengren A, Kamarauskaite J, Kolenova K, Stålbrand H. Rational engineering of mannosyl binding in the distal glycone subsites of cellulomonas fimi endo-β-1,4-mannanase: mannosyl binding promoted at subsite -2 and demoted at subsite -3. Biochemistry. 2010;49:4884–96.
Article
CAS
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.
Article
CAS
PubMed
Google Scholar
Spodsberg N, Krogh KBRM, Monrad RN, Ekloef J, Rasmussen L, Lynglev GB, et al. Method for producing a coffee extract employing enzymes having beta-1,3-galactanase activity. 2015; Patent: International Publication Number WO 2015/022428 Al.
Lever M. Rapid fluorometric or spectrophotometric determination of isoniazid. Biochem Med. 1972;6:65–71.
Article
CAS
PubMed
Google Scholar
Brown AM. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput Methods Programs Biomed. 2001;65:191–200.
Article
CAS
PubMed
Google Scholar
Viborg AH, Katayama T, Abou Hachem M, Andersen MCF, Nishimoto M, Clausen MH, et al. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology. 2014;24:208–16.
Article
CAS
PubMed
Google Scholar
Andersen MCF, Boos I, Marcus SE, Kračun SK, Rydahl MG, Willats WGT, et al. Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-D-galactotetraose. Carbohydr Res. 2016;436:36–40.
Article
CAS
PubMed
Google Scholar
Andersen MCF, Kračun SK, Rydahl MG, Willats WGT, Clausen MH. Synthesis of β-1,4-linked galactan side-chains of rhamnogalacturonan I. Chem A Eur J. 2016;22:11543–8.
Article
CAS
Google Scholar
Flot D, Mairs T, Giraud T, Guijarro M, Lesourd M, Rey V, et al. The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat. 2010;17:107–18.
Article
CAS
PubMed
Google Scholar
Kabsch WXDS. XDS. Acta Crystallogr Sect D Biol Crystallogr. 2010;66:125–32.
Article
CAS
Google Scholar
Sparta KM, Krug M, Heinemann U, Mueller U, Weiss MS. XDSAPP2.0. J Appl Crystallogr. 2016;49:1085–92.
Article
Google Scholar
Keegan RM, Winn MD. MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr Sect D Biol Crystallogr. 2008;64:119–24.
Article
CAS
Google Scholar
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr. 2010;66:486–501.
Article
CAS
Google Scholar
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr Sect D Biol Crystallogr. 2012;68:352–67.
Article
CAS
Google Scholar
Baker EN, Hubbard RE. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44:97–179.
Article
CAS
PubMed
Google Scholar
Zhao Y, Li J, Gu H, Wei D, Xu Y, Fu W, et al. Conformational preferences of π–π stacking between ligand and protein, analysis derived from crystal structure data geometric preference of π–π interaction. Interdiscip Sci Comput Life Sci. 2015;7:211–20.
Article
CAS
Google Scholar
Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW. High resolution structure and sequence of T. aurantiacus Xylanase I: implications for the evolution of thermostability in family 10 Xylanases and enzymes with βα-barrel architecture. Proteins Struct Funct Genet. 1999;36:295–306.
Article
CAS
PubMed
Google Scholar
Teixeira S, Lo Leggio L, Pickersgill R, Cardin C. Anisotropic refinement of the structure of Thermoascus aurantiacus xylanase I. Acta Crystallogr Sect D Biol Crystallogr. 2001;57:385–92.
Article
CAS
Google Scholar
Hutchinson EG, Thornton JM. PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci. 1996;5:212–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CR, Makhatadze GI. ProteinVolume: calculating molecular van der Waals and void volumes in proteins. BMC Bioinform. 2015;16:1–6.
Article
Google Scholar
Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2019. Vienna, Au. https://www.R-project.org/.
Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9.
Article
CAS
Google Scholar
Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.
Article
PubMed
Google Scholar
Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graph. 1996;14:33–8.
Article
CAS
PubMed
Google Scholar
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153:044130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34:2135–45.
Article
CAS
PubMed
PubMed Central
Google Scholar