Benedetti M, Vecchi V, Barera S, Dall’Osto L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Fact. 2018;17(1).
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J Cell Mol Biol. 2008;54(4):621.
Article
CAS
Google Scholar
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2019;26(4):709.
Article
CAS
PubMed
Google Scholar
Harris E. Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:363.
Article
CAS
PubMed
Google Scholar
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial use of cell wall degrading enzymes: the fine line between production strategy and economic feasibility. Front Bioeng Biotechnol. 2020;8.
Lian J, Wijffels R, Smidt H, Sipkema D. The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol. 2018;11(5):806.
Article
PubMed
PubMed Central
Google Scholar
Cuellar-Bermudez S, Aguilar-Hernandez I, Cardenas-Chavez D, Ornelas-Soto N, Romero-Ogawa M, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8(2):190.
Article
CAS
PubMed
Google Scholar
Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen K, et al. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnol J. 2020;18(10):2053.
Article
CAS
PubMed Central
Google Scholar
Skrede A, Mydland L, Ahlstrøm Ø, Reitan K, Gislerød H, Øverland M. Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci. 2011;20(1):131–42.
Article
Google Scholar
Gong Y, Sørensen S, Dahle D, Nadanasabesan N, Dias J, Valente L, et al. Approaches to improve utilization of Nannochloropsis oceanica in plant-based feeds for Atlantic salmon. Aquaculture. 2020;522:735122.
Article
CAS
Google Scholar
Santoro I, Nardi M, Benincasa C, Costanzo P, Giordano G, Procopio A, et al. Sustainable and selective extraction of lipids and bioactive compounds from microalgae. Molecules (Basel, Switzerland). 2019;24(23):4347.
Article
CAS
PubMed Central
Google Scholar
Chew K, Yap J, Show P, Suan N, Juan J, Ling T, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53.
Article
CAS
PubMed
Google Scholar
Fu C, Hung T, Chen J, Su C, Wu W. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour Technol. 2010;101(22):8750.
Article
CAS
PubMed
Google Scholar
Rodrigues M, da Silva BE. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res. 2011;2011:1–5.
Article
CAS
Google Scholar
Maffei G, Bracciale M, Broggi A, Zuorro A, Santarelli M, Lavecchia R. Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresour Technol. 2018;249:592.
Article
CAS
PubMed
Google Scholar
Gerken H, Donohoe B, Knoshaug E. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta. 2013;237(1):239.
Article
CAS
PubMed
Google Scholar
Kumar M, Jeon J, Choi J, Kim S. Rapid and efficient genetic transformation of the green microalga Chlorella vulgaris. J Appl Phycol. 2018;30(3):1735–45.
Article
CAS
Google Scholar
Visagie C, Houbraken J, Frisvad J, Hong S, Klaassen C, Perrone G, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, et al. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J Cell Mol Biol. 2011;66(5):770.
Article
CAS
Google Scholar
Costas A, White A, Metcalf W. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem. 2001;276(20):17429.
Article
CAS
PubMed
Google Scholar
Loera-Quezada M, Leyva-González M, Velázquez-Juárez G, Sanchez-Calderón L, Do Nascimento M, López-Arredondo D, et al. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnol J. 2016;14(10):2066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gramegna G, Scortica A, Scafati V, Ferella F, Gurrieri L, Giovannoni M, et al. Exploring the potential of microalgae in the recycling of dairy wastes. Bioresour Technol Rep. 2020;12:100604.
Article
Google Scholar
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, et al. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. Plant Biotechnol J. 2021;19(1):124.
Article
CAS
PubMed
Google Scholar
Tsang C, Tang J, Lau S, Woo P. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - past, present and future. Comput Struct Biotechnol J. 2018;16:197.
Article
PubMed
PubMed Central
Google Scholar
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang X, Meijer M, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:169.
Article
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol J Comput Mol Cell Biol. 2012;19(5):455.
Article
CAS
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England). 2013;29(8):1072.
Article
CAS
PubMed Central
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods in molecular biology (Clifton, NJ). 2019;1962.
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR genomics and bioinformatics. 2021;3(1).
Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 2018;46(W1):W84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keibler E, Brent M. Eval: a software package for analysis of genome annotations. BMC Bioinformatics. 2003.
Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019;47(W1):W260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S, et al. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant J Cell Mol Biol. 2019;100(6):1289.
Article
CAS
Google Scholar
Coelho D, Lopes P, Cardoso V, Ponte P, Brás J, Madeira M, et al. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci Rep. 2019;9(1).
Meng L, Li X, Lv C, Li C, Xu G, Huang C, et al. Sulfur-containing cytotoxic curvularin macrolides from Penicillium sumatraense MA-92, a fungus obtained from the rhizosphere of the mangrove Lumnitzera racemosa. J Nat Prod. 2013;76(11):2145.
Article
CAS
PubMed
Google Scholar
Wu Y, Zhang Z, Yue Z, Huang J, Li X, Jiang J, et al. Sumalactones A-D, four new curvularin-type macrolides from a marine deep sea fungus Penicillium Sumatraense. RSC Adv. 2017;7:40015.
Article
CAS
Google Scholar
Mahdian S, Zafari D. First report of table grape blue mold caused by Penicillium sumatraense in Iran. Am Phytopatholog Soc. 2016;101:244.
Google Scholar
Oliveira A, Frensch G, Marques F, Vargas J, Rodrigues M, Mariano A. Production of methyl oleate by direct addition of fermented solid Penicillium sumatraense and Aspergillus fumigatus. Renewable Energy. 2020;162:1132.
Article
CAS
Google Scholar
Terrasan C, Guisan J, Carmona E. Xylanase and β-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates. Electron J Biotechnol. 2016;23:54.
Article
Google Scholar
Sunkar B, Kannoju B, Bhukya B. Optimized production of xylanase by Penicillium purpurogenum and ultrasound impact on enzyme kinetics for the production of monomeric sugars from pretreated corn cobs. Front Microbiol. 2020;11.
Imam SH, Buchanan MJ, Shin HC, Snell WJ. The Chlamydomonas cell wall: characterization of the wall framework. J Cell Biol Rockefeller University Press. 1985;101:1599.
Article
CAS
Google Scholar
Rashidi B, Trindade L. Detailed biochemical and morphologic characteristics of the green microalga Neochloris oleoabundans cell wall. Algal Res. 2018;35:152–9.
Article
Google Scholar
Mahdy A, Mendez L, Blanco S, Ballesteros M, González-Fernández C. Protease cell wall degradation of Chlorella vulgaris: effect on methane production. Bioresour Technol. 2014;171:421–7.
Article
CAS
PubMed
Google Scholar
Mahdy A, Mendez L, Ballesteros M, González-Fernández C. Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel. 2015;158:35–41.
Article
CAS
Google Scholar
Magdalena JA, Llamas M, Tomás-Pejó E, González-Fernández C. Semicontinuous anaerobic digestion of protease pretreated Chlorella biomass for volatile fatty acids production. J Chem Technol Biotechnol. 2019;94:1861–9.
Article
CAS
Google Scholar
Raimundo S, Pattathilm S, Eberhardm S, Hahnm M, Popperm Z. β-1,3-Glucans are components of brown seaweed (Phaeophyceae) cell walls. Protoplasma. 2017;254(2):997.
Article
CAS
PubMed
Google Scholar
Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10.
Article
CAS
Google Scholar
Safi C, Zebib B, Merah O, Pontalier P, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sustain Energy Rev. 2014;35:265–78.
Article
Google Scholar
Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, et al. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci USA. 2015;112(17):5533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Gurnon J, Adams B, Graves M, Van Etten J. Characterization of a beta-1,3-glucanase encoded by chlorella virus PBCV-1. Virology. 2000;276(1):27–36.
Article
CAS
PubMed
Google Scholar
King B, Waxman K, Nenni N, Walker L, Bergstrom G, Gibson D. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels. 2011;4.
Zhou W, Min M, Hu B, Ma X, Liu Y, Wang Q, et al. Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation Purification Technol. 2013;107:158.
Article
CAS
Google Scholar
Muradov N, Taha M, Miranda A, Wrede D, Kadali K, Gujar A, et al. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels. 2015;8.
Malik S, Khan F, Atta Z, Habib N, Haider M, Wang N, et al. Microalgal flocculation: global research progress and prospects for algal biorefinery. Biotechnol Appl Biochem. 2020;67(1):52.
Article
CAS
PubMed
Google Scholar
Velicer G, Mendes-Soares H. Bacterial predators. Curr Biol. 2009;19(2):55.
Article
CAS
Google Scholar
Gromov B, Mamkaeva K. Electron microscopic study of parasitism by Bdellovibrio chlorellavorus bacteria on cells of the green alga Chlorella vulgaris. Tsitologiia. 1972;14(2).
Epstein L, Nicholson RL. Adhesion and adhesives of fungi and oomycetes. SpringerLink. Biological Adhesives. 2006.
Bolger AM, Lohse M, Bjoern U. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4(10):914–9.
Google Scholar
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21(1):1–31.
Article
CAS
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10.
Hoff K, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics (Oxford, England). 2016;32(5):767.
Article
CAS
Google Scholar
Brůna T, Hoff K, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR genomics and bioinformatics. 2021;3(1).
Nachtweide S, Stanke M. Multi-genome annotation with AUGUSTUS. Methods in molecular biology (Clifton, NJ). 2019;1962.
Katoh K, Standley D. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Price M, Dehal P, Arkin A. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556(7702):452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Junier T, Zdobnov E. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics (Oxford, England). 2010;26(13):1669.
Article
CAS
PubMed Central
Google Scholar
Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem Med. 1973;7(2):274.
Article
CAS
PubMed
Google Scholar
Pontiggia D, Spinelli F, Fabbri C, Licursi V, Negri R, De Lorenzo G, et al. Changes in the microsomal proteome of tomato fruit during ripening. Sci Rep. 2019;9(1):14350.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cox J, Neuhauser N, Michalski A, Scheltema R, Olsen J, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794.
Article
CAS
PubMed
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric methods for determination of sugars and related substances. Anal Chem. 1956;28:350–8.
Article
CAS
Google Scholar
Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R. The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta. 2002;1556(1):29.
Article
CAS
PubMed
Google Scholar
Mishra S, Suh W, Farooq W, Moon M, Shrivastav A, Park M, et al. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol. 2014;155:330.
Article
CAS
PubMed
Google Scholar