Schirmer A, Rude MA, Li X, Popova E, Cardayre SD. Microbial biosynthesis of alkanes. Science. 2010;329(5991):559–62.
Article
CAS
Google Scholar
Kissin YV. Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes. Catal Rev. 2001;43(1–2):85–146.
Article
CAS
Google Scholar
Ahamed A, Ahring BK. Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol. 2011;102(20):9718–22.
Article
CAS
Google Scholar
Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Strobel SA. Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLos Genet. 2012;8(3): e1002558.
Article
CAS
Google Scholar
Howard RW, Blomquist GJ. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol. 2005;50:371–93.
Article
CAS
Google Scholar
Kang MK, Nielsen J. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol. 2017;44(4–5):613–22.
Article
CAS
Google Scholar
Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci USA. 2013;110(19):7636–41.
Article
CAS
Google Scholar
Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM. Evidence for only oxygenative cleavage of aldehydes to Alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry. 2012;51(40):7908–16.
Article
CAS
Google Scholar
Marsh E, Waugh MW. Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis. ACS Catal. 2013;3(11):2515–21.
Article
CAS
Google Scholar
Rude MA, Baron TS, Brubaker S, Alibhai M, Cardayre SD, Schirmer A. Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol. 2011;77(5):1718–27.
Article
CAS
Google Scholar
Rui Z, Li X, Zhu XJ, Liu J, Domigan B, Barr I, Cate JHD, Zhang WJ. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci USA. 2014;111(51):18237–42.
Article
CAS
Google Scholar
Rui Z, Harris NC, Zhu XJ, Huang W, Zhang WJ. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal. 2015;5(12):7091–4.
Article
CAS
Google Scholar
Yi X, Gao QQ, Zhang L, Wang X, Bao J. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnol Biofuels. 2019;12:126.
Article
Google Scholar
Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995;59(2):201–22.
Article
CAS
Google Scholar
Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–41.
Article
CAS
Google Scholar
Wen JB, Xiao Y, Liu T, Gao QQ, Bao J. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. Biotechnol Biofuels. 2018;11:132.
Article
Google Scholar
Wang X, Khushk I, Xiao Y, Gao QQ, Bao J. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution. Appl Microbiol Biotechnol. 2018;102(1):377–88.
Article
CAS
Google Scholar
Wen JB, Bao J. Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn stover hydrolysate. Biotechnol Biofuels. 2019;12:86.
Article
Google Scholar
Jin C, Huang Z, Bao J. High-titer glutamic acid production from lignocellulose using an engineered Corynebacterium glutamicum with simultaneous co-utilization of xylose and glucose. ACS Sustain Chem Eng. 2020;8(16):6315–22.
Article
CAS
Google Scholar
Jin C, Bao J. Lysine production by dry biorefining of wheat straw and cofermentation of Corynebacterium glutamicum. J Agric Food Chem. 2021;69(6):1900–6.
Article
CAS
Google Scholar
Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJC, Sahm H, Eggeling L. Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum. Microbiology. 2005;151(7):2421–7.
Article
CAS
Google Scholar
Akcuraa M, Turanb V, Koktenc K, Kaplan M. Fatty acid and some micro element compositions of cluster bean (Cyamopsis tetragonoloba) genotype seeds growing under Mediterranean climate. Ind Crops Prod. 2019;128:140–6.
Article
Google Scholar
Plassmeier J, Li YY, Rueckert C, Sinskey AJ. Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng. 2016;33:86–97.
Article
CAS
Google Scholar
Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl Environ Microbiol. 2013;79:21.
Article
Google Scholar
Jiang Y, Chan CH, Cronan JE. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-coa synthetase family. Biochemistry. 2006;45(33):10008–19.
Article
CAS
Google Scholar
Lee JW, Niraula NP, Trinh CT. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab Eng Commun. 2018;7: e00076.
Article
Google Scholar
Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol Bioeng. 2016;113(1):163–72.
Article
CAS
Google Scholar
Liu X, Wei Z, Zhao Z, Dai X, Bai Z. Protein secretion in Corynebacterium glutamicum. Crit Rev Biotechnol. 2016;37(4):541–51.
Article
Google Scholar
Zhang L, Jia H, Xu D. Construction of a novel twin-arginine translocation (Tat)-dependent type expression vector for secretory production of heterologous proteins in Corynebacterium glutamicum. Plasmid. 2015;82:50–5.
Article
CAS
Google Scholar
Wen JB, Bao J. Improved fermentative γ-aminobutyric acid production by secretory expression of glutamate decarboxylase by Corynebacterium glutamicum. J Biotechnol. 2021;331:19–25.
Article
CAS
Google Scholar
Schaefer A, Tauch A, Jaeger W, Kalinowski J, Thierbach G, Puehler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73.
Article
CAS
Google Scholar
Zhang J, Wang XF, Chu D, He YQ, Bao J. Dry pretreatment of lignocellulose with extremely low steam and water usage or bioethanol production. Bioresour Technol. 2011;102(6):4480–8.
Article
CAS
Google Scholar
He YQ, Zhang J, Bao J. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. Biotechnol Biofuels. 2016;9:19.
Article
Google Scholar
He YQ, Fang ZH, Zhang J, Li XL, Bao J. De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation. Bioresour Technol. 2014;169:552–8.
Article
CAS
Google Scholar
He YQ, Zhang J, Bao J. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation. Bioresour Technol. 2014;158:360–4.
Article
CAS
Google Scholar
Liu G, Zhang Q, Li HG, Qurishi AS, Zhang J, Bao XM, Bao J. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnol Bioeng. 2018;115:60–9.
Article
CAS
Google Scholar
Zhang J, Wang XS, Chu DQ, He YQ, Bao J. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production. Bioresour Technol. 2011;102:4480–8.
Article
CAS
Google Scholar
Zhang B, Ahemed F, Zhan BR, Bao J. Transformation of lignocellulose to starch-like carbohydrates by organic acid-catalyzed pretreatment and biological detoxification. Biotechnol Bioeng. 2021;118(10):4105–18.
Article
CAS
Google Scholar
Han XS, Bao J. General method to correct the fluctuation of acid based pretreatment efficiency of lignocellulose for highly efficient bioconversion. ACS Sustain Chem Eng. 2018;6:4212–9.
Article
CAS
Google Scholar
Yi X, Gao QQ, Zhang L, Wang X, He YQ, Hu FX, Zhang J, Zou G, Yang SH, Zhou ZH, Bao J. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnol Biofuels. 2019;12:126.
Article
Google Scholar