Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol. 2021;19:701–15.
Article
CAS
Google Scholar
Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, Englund E, et al. Biofuels for a sustainable future. Cell. 2021;184:1636–47.
Article
CAS
Google Scholar
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454:841–5.
Article
CAS
Google Scholar
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705.
Article
CAS
Google Scholar
Xu Z, Lei P, Zhai R, Wen Z, Jin M. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels. 2019;12:32.
Article
CAS
Google Scholar
Becker J, Wittmann C. A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv. 2019;37:107360.
Article
CAS
Google Scholar
Baral NR, Yang M, Harvey BG, Simmons BA, Mukhopadhyay A, Lee TS, et al. Production cost and carbon footprint of biomass-derived dimethylcyclooctane as a high-performance jet fuel blendstock. ACS sustainable chem Eng. Am Chem Soc. 2021;9:11872–82.
CAS
Google Scholar
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol. 2020;104:7745–66.
Article
CAS
Google Scholar
Nikel PI, Chavarría M, Danchin A, de Lorenzo V. From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol. 2016;34:20–9.
Article
CAS
Google Scholar
Weinel C, Nelson KE, Tümmler B. Global features of the Pseudomonas putida KT2440 genome sequence. Environ Microbiol. 2002;4:809–18.
Article
CAS
Google Scholar
Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem. 2015;290:25920–32.
Article
CAS
Google Scholar
Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488:320–8.
Article
CAS
Google Scholar
Li M, Hou F, Wu T, Jiang X, Li F, Liu H, et al. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. natural product reports. Royal Soc Chem. 2020;37:80–99.
CAS
Google Scholar
George KW, Thompson MG, Kang A, Baidoo E, Wang G, Chan LJG, et al. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci Rep. 2015;5:11128.
Article
Google Scholar
Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng. 2013;19:33–41.
Article
CAS
Google Scholar
Mendez-Perez D, Alonso-Gutierrez J, Hu Q, Molinas M, Baidoo EEK, Wang G, et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol Bioeng. 2017;114:1703–12.
Article
CAS
Google Scholar
Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS. Identification and microbial production of a terpene-based advanced biofuel. Nat Commun. 2011;2:483.
Article
Google Scholar
Liu C-L, Tian T, Alonso-Gutierrez J, Garabedian B, Wang S, Baidoo EEK, et al. Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnol Biofuels. 2018;11:285.
Article
CAS
Google Scholar
Gupta P, Phulara SC. Metabolic engineering for isoprenoid-based biofuel production. J Appl Microbiol. 2015;119:605–19.
Article
CAS
Google Scholar
Kim J, Baidoo EEK, Amer B, Mukhopadhyay A, Adams PD, Simmons BA, et al. Engineering Saccharomyces cerevisiae for isoprenol production. Metab Eng. 2021;64:154–66.
Article
CAS
Google Scholar
Rosenkoetter KE, Kennedy CR, Chirik PJ, Harvey BG. [4 + 4]-cycloaddition of isoprene for the production of high-performance bio-based jet fuel. Green Chem Royal Soc Chem. 2019;21:5616–23.
Article
CAS
Google Scholar
Kang A, George KW, Wang G, Baidoo E, Keasling JD, Lee TS. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng. 2016;34:25–35.
Article
CAS
Google Scholar
George KW, Thompson MG, Kim J, Baidoo EEK, Wang G, Benites VT, et al. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng. 2018;47:60–72.
Article
CAS
Google Scholar
Kang A, Mendez-Perez D, Goh E-B, Baidoo EEK, Benites VT, Beller HR, et al. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli. Metab Eng. 2019;56:85–96.
Article
CAS
Google Scholar
Mi J, Becher D, Lubuta P, Dany S, Tusch K, Schewe H, et al. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb Cell Fact. 2014;13:170.
Article
Google Scholar
Hernandez-Arranz S, Perez-Gil J, Marshall-Sabey D, Rodriguez-Concepcion M. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microb Cell Fact. 2019;18:152.
Article
Google Scholar
Yang J, Son JH, Kim H, Cho S, Na J, Yeon YJ, et al. Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production. Microb Cell Fact. 2019;18:168.
Article
Google Scholar
Thompson M, Incha M, Pearson A, Schmidt M, Sharpless W, Christopher E, et al. Fatty acid and alcohol metabolism in Pseudomonas putida: functional analysis using random barcode transposon sequencing. Appl Environ Microbiol Am Soc Microbiol. 2020;86:e01665-e1720.
CAS
Google Scholar
Banerjee D, Eng T, Lau AK, Sasaki Y, Wang B, Chen Y, et al. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat Commun. 2020;11:5385.
Article
CAS
Google Scholar
Petra S, Juliane W, Hermann S, Lothar E. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by corynebacterium glutamicum. Appl Environ Microbiol Am Soc Microbiol. 2002;68:3321–7.
Article
Google Scholar
Wang X, Pereira JH, Tsutakawa S, Fang X, Adams PD, Mukhopadhyay A, et al. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450. Metab Eng. 2021;64:41–51.
Article
CAS
Google Scholar
Wang X, Goh E-B, Beller HR. Engineering E. coli for simultaneous glucose–xylose utilization during methyl ketone production. Microb Cell Fact. 2018;17:12.
Article
Google Scholar
Baidoo EEK, Wang G, Joshua CJ, Benites VT, Keasling JD. Liquid chromatography and mass spectrometry analysis of isoprenoid intermediates in Escherichia coli BT—microbial metabolomics: methods and protocols. In: Baidoo EEK, editor. New York. New York: Springer; 2019. p. 209–24.
Google Scholar
Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, et al. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng. 2011;5:12.
Article
CAS
Google Scholar
Gonzalez JE, Long CP, Antoniewicz MR. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metab Eng. 2017;39:9–18.
Article
CAS
Google Scholar
Wang Q, Nomura CT. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources. J Biosci Bioeng. 2010;110:653–9.
Article
CAS
Google Scholar
Kang A, Meadows CW, Canu N, Keasling JD, Lee TS. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metab Eng. 2017;41:125–34.
Article
CAS
Google Scholar
Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol. 2011;29:1074–8.
Article
CAS
Google Scholar
Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev. 2010;34:658–84.
Article
CAS
Google Scholar
Molina L, La RR, Nogales J, Rojo F. Pseudomonas putida KT2440 metabolism undergoes sequential modifications during exponential growth in a complete medium as compounds are gradually consumed. Environ Microbiol. 2019;21:2375–90.
Article
CAS
Google Scholar
Tian Y, Lin C-Y, Park J-H, Wu C-Y, Kakumanu R, Pidatala VR, et al. Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor. Biotechnol Biofuels. 2021;14:217.
Article
CAS
Google Scholar
Alonso-Gutierrez J, Kim E-M, Batth TS, Cho N, Hu Q, Chan LJG, et al. Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng. 2015;28:123–33.
Article
CAS
Google Scholar
Wehrmann M, Berthelot C, Billard P, Klebensberger J, Ellermeier CD. The PedS2/PedR2 Two-Component System Is Crucial for the Rare Earth Element Switch in Pseudomonas putida KT2440. mSphere. 2018;3(4):e00376–418.
Article
CAS
Google Scholar
Puehringer S, Metlitzky M, Schwarzenbacher R. The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem. 2008;9:8.
Article
Google Scholar
Chatzivasileiou AO, Ward V, Edgar SM, Stephanopoulos G. Two-step pathway for isoprenoid synthesis. Proc Natl Acad Sci. 2019;116:506–11.
Article
CAS
Google Scholar
Clomburg JM, Qian S, Tan Z, Cheong S, Gonzalez R. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci. 2019;116:12810–5.
Article
CAS
Google Scholar
Lim HG, Eng T, Banerjee D, Alarcon G, Lau AK, Park MR, Simmons BA, Palsson BO, Singer SW, Mukhopadhyay A, Feist AM. Generation of Pseudomonas putida KT2440 strains with efficient utilization of xylose and galactose via adaptive laboratory evolution. ACS Sustain Chem Eng. 2021;9(34):11512–23. https://doi.org/10.1021/acssuschemeng.1c03765.
Article
CAS
Google Scholar
Cook TB, Rand JM, Nurani W, Courtney DK, Liu SA, Pfleger BF. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol. 2018;45:517–27.
Article
CAS
Google Scholar
Carbonell P, Jervis AJ, Robinson CJ, Yan C, Dunstan M, Swainston N, et al. An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals. Commun Biol. 2018;1:66.
Article
Google Scholar