Kiefer D, Merkel M, Lilge L, Henkel M, Hausmann R. From acetate to bio-based products: underexploited potential for industrial biotechnology. Trends Biotechnol. 2021;39(4):397–411.
Article
CAS
Google Scholar
Muscat A, De Olde E, de Boer IJ, Ripoll-Bosch R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob Food Sec. 2020;25:100330.
Article
Google Scholar
Blombach B, Grünberger A, Centler F, Wierckx N, Schmid J. Exploiting unconventional prokaryotic hosts for industrial biotechnology. Trends Biotechnol. 2021;40(4):385–97.
Article
Google Scholar
Novak K, Pflügl S. Towards biobased industry: acetate as a promising feedstock to enhance the potential of microbial cell factories. FEMS Microbiol Lett. 2018;365(20):226.
Google Scholar
Gong G, Wu B, Liu L, Li J, Zhu Q, He M, et al. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. Eng Microbiol. 2022;2(4):100036
Article
CAS
Google Scholar
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng. 2020;58:17–34.
Article
CAS
Google Scholar
Wolf N, Bussmann M, Koch-Koerfges A, Katcharava N, Schulte J, Polen T, et al. Molecular basis of growth inhibition by acetate of an adenylate cyclase-deficient mutant of Corynebacterium glutamicum. Front Microbiol. 2020;11:87.
Article
Google Scholar
Blombach B, Schreiner ME, Ji H, Bartek T, Oldiges M, Eikmanns BJ. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol. 2007;73(7):2079–84.
Article
CAS
Google Scholar
Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ. Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol. 2008;79(3):471–9.
Article
CAS
Google Scholar
Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2007;76(3):615–23.
Article
CAS
Google Scholar
Krause FS, Blombach B, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol. 2010;76(24):8053–61.
Article
CAS
Google Scholar
Blombach B, Riester T, Wieschalka S, Ziert C, Youn J-W, Wendisch VF, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77(10):3300–10.
Article
CAS
Google Scholar
Lange J, Müller F, Bernecker K, Dahmen N, Takors R, Blombach B. Valorization of pyrolysis water: a biorefinery side stream, for 1, 2-propanediol production with engineered Corynebacterium glutamicum. Biotechnol Biofuels. 2017;10(1):1–13.
Article
Google Scholar
Kiefer D, Merkel M, Lilge L, Hausmann R, Henkel M. High cell density cultivation of Corynebacterium glutamicum on bio-based lignocellulosic acetate using pH-coupled online feeding control. Biores Technol. 2021;340:125666.
Article
CAS
Google Scholar
Kiefer D, Tadele LR, Lilge L, Henkel M, Hausmann R. High-level recombinant protein production with Corynebacterium glutamicum using acetate as carbon source. Microbial Biotechnol. 2022;15(11):2744–2757
Article
CAS
Google Scholar
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, et al. Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol. 2003;104(1–3):99–122.
Article
CAS
Google Scholar
Arndt A, Eikmanns BJ. Regulation of carbon metabolism in Corynebacterium glutamicum: wymondham. UK: Caister Academic Press; 2008.
Google Scholar
Shah A, Blombach B, Gauttam R, Eikmanns BJ. The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2018;102(14):5901–10.
Article
CAS
Google Scholar
Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K. Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol. 2009;191(3):940–8.
Article
CAS
Google Scholar
Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ. Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol. 2000;182(11):3088–96.
Article
CAS
Google Scholar
Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, et al. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol. 2011;154(2–3):126–39.
Article
CAS
Google Scholar
Werpy T, Petersen G. 2004. Top value added chemicals from biomass: volume I-results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Lab. Golden
Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US department of energy’s “Top 10” revisited. Green Chem. 2010;12(4):539–54.
Article
CAS
Google Scholar
Teleky B-E, Vodnar DC. Recent advances in biotechnological itaconic acid production, and application for a sustainable approach. Polymers. 2021;13(20):3574.
Article
CAS
Google Scholar
Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo EF. World market and biotechnological production of itaconic acid. 3 Biotech. 2018;8(3):1–15.
Article
Google Scholar
Cordes T, Michelucci A, Hiller K. Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu Rev Nutr. 2015;35:451–73.
Article
CAS
Google Scholar
Saha BC. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J Ind Microbiol Biotechnol. 2017;44(2):303–15.
Article
CAS
Google Scholar
El-Imam AA, Du C. Fermentative itaconic acid production. J Biodivers Bioprospect Dev. 2014;1(1):1–8.
Google Scholar
Kuenz A, Krull S. Biotechnological production of itaconic acid - things you have to know. Appl Microbiol Biotechnol. 2018;102(9):3901–14.
Article
CAS
Google Scholar
Krull S, Hevekerl A, Kuenz A, Prüße U. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl Microbiol Biotechnol. 2017;101(10):4063–72.
Article
CAS
Google Scholar
Becker J, Hosseinpour Tehrani H, Ernst P, Blank LM, Wierckx N. An optimized Ustilago maydis for itaconic acid production at maximal theoretical yield. J Fungi. 2020;7(1):20.
Article
Google Scholar
Harder BJ, Bettenbrock K, Klamt S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng. 2018;115(1):156–64.
Article
CAS
Google Scholar
Otten A, Brocker M, Bott M. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng. 2015;30:156–65.
Article
CAS
Google Scholar
Merkel M, Kiefer D, Schmollack M, Blombach B, Lilge L, Henkel M, et al. Acetate-based production of itaconic acid with Corynebacterium glutamicum using an integrated pH-coupled feeding control. Biores Technol. 2022;351:126994.
Article
CAS
Google Scholar
Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng. 2002;94(1):29–33.
Article
CAS
Google Scholar
Elmore JR, Dexter GN, Salvachúa D, Martinez-Baird J, Hatmaker EA, Huenemann JD, et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat Commun. 2021;12(1):1–12.
Article
Google Scholar
Li Y, Zhao M, Wei D, Zhang J, Ren Y. Photocontrol of Itaconic acid synthesis in Escherichia coli. ACS Synth Biol. 2022;11(6):2080–2088
Article
CAS
Google Scholar
Schwentner A, Feith A, Münch E, Busche T, Rückert C, Kalinowski J, et al. Metabolic engineering to guide evolution–creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab Eng. 2018;47:31–41.
Article
CAS
Google Scholar
Riedel C, Rittmann D, Dangel P, Möckel B, Petersen S, Sahm H, et al. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol. 2001;3(4):573–83.
CAS
Google Scholar
Reinscheid DJ, Eikmanns BJ, Sahm H. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J Bacteriol. 1994;176(12):3474–83.
Article
CAS
Google Scholar
Vas̆icová P, Pátek M, Nešvera J, Sahm H, Eikmanns B. Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol. 1999;181(19):6188–91.
Article
Google Scholar
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol. 2004;186(9):2798–809.
Article
CAS
Google Scholar
Noh MH, Lim HG, Woo SH, Song J, Jung GY. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol Bioeng. 2018;115(3):729–38.
Article
CAS
Google Scholar
Rehm N, Buchinger S, Strösser J, Dotzauer A, Walter B, Hans S, et al. Impact of adenylyltransferase GlnE on nitrogen starvation response in Corynebacterium glutamicum. J Biotechnol. 2010;145(3):244–52.
Article
CAS
Google Scholar
Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JP, et al. Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol. 2015;99(1):221–8.
Article
CAS
Google Scholar
Niebel A, Funke A, Pfitzer C, Dahmen N, Weih N, Richter D, et al. Fast pyrolysis of wheat straw - improvements of operational stability in 10 years of Bioliq pilot plant operation. Energy Fuels. 2021;35(14):11333–45.
Article
CAS
Google Scholar
Kubisch C, Ochsenreither K. Detoxification of a pyrolytic aqueous condensate from wheat straw for utilization as substrate in Aspergillus oryzae DSM 1863 cultivations. Biotechnol Biofuel Bioprod. 2022;15(1):1–21.
Article
Google Scholar
Baumgart M, Mustafi N, Krug A, Bott M. Deletion of the aconitase gene in Corynebacterium glutamicum causes strong selection pressure for secondary mutations inactivating citrate synthase. J Bacteriol. 2011;193(24):6864–73.
Article
CAS
Google Scholar
Rehm N, Burkovski A. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production. Appl Microbiol Biotechnol. 2011;89(2):239–48.
Article
CAS
Google Scholar
Müller T, Strösser J, Buchinger S, Nolden L, Wirtz A, Krämer R, et al. Mutation-induced metabolite pool alterations in Corynebacterium glutamicum: Towards the identification of nitrogen control signals. J Biotechnol. 2006;126(4):440–53.
Article
Google Scholar
Eikmanns BJ, Rittmann D, Sahm H. Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol. 1995;177(3):774–82.
Article
CAS
Google Scholar
Ozcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Krämer R. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J Bacteriol. 2007;189(20):7485–96.
Article
Google Scholar
Gibson DG. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 2011;498:349–61.
Article
CAS
Google Scholar
Green MR, Sambrook J. Molecular cloning: a laboratory manual. 4th ed. New York: Cold Spring Harbor Laboratory Press; 2012.
Google Scholar
Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol. 2002;45(5):362–7.
Article
CAS
Google Scholar
van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol. 1999;52(4):541–5.
Article
Google Scholar
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73.
Article
Google Scholar
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol. 1991;34(5):617–22.
Article
CAS
Google Scholar
Siebert D, Altenbuchner J, Blombach B. A timed off-switch for dynamic control of gene expression in Corynebacterium glutamicum. Front Bioeng Biotechnol. 2021;9:704681
Article
Google Scholar
Klingenberg M, Pfaff E. Means of terminating reactions. Methods Enzymol. 1967;10:680–4.
Article
CAS
Google Scholar
Ebbighausen H, Weil B, Krämer R. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch Microbiol. 1989;151(3):238–44.
Article
CAS
Google Scholar
Buchholz J, Graf M, Blombach B, Takors R. Improving the carbon balance of fermentations by total carbon analyses. Biochem Eng J. 2014;90:162–9.
Article
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
Google Scholar