Chio C, Sain M, Qin W. Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev. 2019;107:232–49.
Article
CAS
Google Scholar
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454:841–5.
Article
CAS
Google Scholar
Chen Z, Wan C. Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sustain Energy Rev. 2017;73:610–21.
Article
CAS
Google Scholar
Lora JH. Industrial commercial lignins: sources, properties and applications. Monomers, Polym Compos from Renew Resour. 2008;10:225–41.
Article
Google Scholar
Weng C, Peng X, Han Y. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnol Biofuels. 2021;14:1–22.
Article
Google Scholar
Spence EM, Calvo-Bado L, Mines P, Bugg TDH. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin. Microb Cell Fact. 2021;20:1–12.
Article
Google Scholar
Perez JM, Kontur WS, Alherech M, Coplien J, Karlen SD, Stahl SS, et al. Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with Novosphingobium aromaticivorans. Green Chem. 2019;21:1340–50.
Article
CAS
Google Scholar
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng. 2018;47:279–93.
Article
CAS
Google Scholar
Becker J, Wittmann C. A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv. 2019. https://doi.org/10.1016/j.biotechadv.2019.02.016.
Article
Google Scholar
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol. 2019;103:3979–4002.
Article
CAS
Google Scholar
Cajnko MM, Oblak J, Grilc M, Likozar B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. Bioresour Technol. 2021;340:1–11.
Article
Google Scholar
Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987;169:2195–201.
Article
CAS
Google Scholar
Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J. 2015;282:1190–213.
Article
CAS
Google Scholar
Marinović M, Nousiainen P, Dilokpimol A, Kontro J, Moore R, Sipilä J, et al. Selective Cleavage of Lignin β- O-4 Aryl Ether Bond by β-Etherase of the White-Rot Fungus Dichomitus squalens. ACS Sustain Chem Eng. 2018;6:2878–82.
Article
Google Scholar
Mallinson SJB, Machovina MM, Silveira RL, Garcia-Borràs M, Gallup N, Johnson CW, et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-04878-2.
Article
Google Scholar
Azubuike CC, Allemann MN, Michener JK. Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products. Curr Opin Microbiol. 2022;65:64–72.
Article
CAS
Google Scholar
Donaghy JA, Kelly PF, McKay A. Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from unpasteurised apple juice. J Sci Food Agric. 1999;79:453–6.
Article
CAS
Google Scholar
Huang HK, Tokashiki M, Maeno S, Onaga S, Taira T, Ito S. Purification and properties of phenolic acid decarboxylase from Candida guilliermondii. J Ind Microbiol Biotechnol. 2012;39:55–62.
Article
CAS
Google Scholar
Chai LY, Zhang H, Yang WC, Zhu YH, Yang ZH, Zheng Y, et al. Biodegradation of ferulic acid by a newly isolated strain of Cupriavidus sp. B-8. J Cent South Univ. 2013;20:1964–70.
Article
CAS
Google Scholar
Sheng X, Lind MES, Himo F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase. FEBS J. 2015;282:4703–13.
Article
CAS
Google Scholar
Priefert H, Rabenhorst J, Steinbüchel A. Biotechnological production of vanillin. Appl Microbiol Biotechnol. 2001;56(3):296–314.
Article
CAS
Google Scholar
Mishra S, Sachan A, Vidyarthi AS, Sachan SG. Transformation of ferulic acid to 4-vinyl guaiacol as a major metabolite: a microbial approach. Rev Environ Sci Biotechnol. 2014;13:377–85.
Article
CAS
Google Scholar
Hainal AR, Capraru AM, Irina V, Popa VI. Lignin as a carbon source for the cultivation of some rhodotorula species. Cellul Chem Technol. 2012;46:87–96.
CAS
Google Scholar
Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsiaghi M, et al. Rhodosporidium toruloides: A new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol Biofuels. 2017;10:1–13.
Article
Google Scholar
SànchezNogué V, Black BA, Kruger JS, Singer CA, Ramirez KJ, Reed ML, et al. Integrated diesel production from lignocellulosic sugars via oleaginous yeast. Green Chem. 2018;20:4349–65.
Article
Google Scholar
Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol. 2009;159:591–604.
Article
CAS
Google Scholar
Wu W, Liu F, Singh S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc Natl Acad Sci. 2018;115:2970–5.
Article
CAS
Google Scholar
Zhang RK, Tan YS, Cui YZ, Xin X, Liu ZH, Li BZ, et al. Lignin valorization for protocatechuic acid production in engineered Saccharomyces cerevisiae. Green Chem. 2021;23:6515–26.
Article
CAS
Google Scholar
Wen Z, Zhang S, Odoh CK, Jin M, Zhao ZK. Rhodosporidium toruloides-A potential red yeast chassis for lipids and beyond One sentence summary: a review updates research progresses on the red yeast Rhodosporidium toruloides and highlights future engineering directions. FEMS Yeast Res. 2020;20:1–12.
Google Scholar
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DAA, et al. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels. 2018;11:1–16.
Article
CAS
Google Scholar
Polburee P, Yongmanitchai W, Lertwattanasakul N, Ohashi T, Fujiyama K, Limtong S. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol. 2015;119:1194–204.
Article
CAS
Google Scholar
Sampaio JP. RhodosporidiumBanno (1967). Yeasts. 2011;3:1523–39.
Article
Google Scholar
Hamamoto M, Nagahama T, Tamura M. Systematic study of basidiomycetous yeasts—Evaluation of the ITS regions of rDNA to delimit species of the genus Rhodosporidium. FEMS Yeast Res. 2002;2:409–13.
CAS
Google Scholar
Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–5.
Article
CAS
Google Scholar
Yoshida T, Sugano Y. A structural and functional perspective of DyP-type peroxidase family. Arch Biochem Biophys. 2015;574:49–55.
Article
CAS
Google Scholar
Park HA, Park G, Jeon W, Ahn JO, Yang YH, Choi KY. Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources fatty acids, fatty alkanes, and aromatic amino acids. Biotechnol Adv. 2020;40:1–22.
Article
Google Scholar
Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta. 2008;1780:1217–35.
Article
CAS
Google Scholar
Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005;6:1–11.
Article
Google Scholar
de Paiva LB, Goldbeck R, dos Santos WD, Squina FM. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Brazilian J Pharm Sci. 2013;49:395–411.
Article
Google Scholar
Mathew S, Abraham TE. Bioconversions of ferulic acid, an hydroxycinnamic acid. Crit Rev Microbiol. 2006;32:115–25.
Article
CAS
Google Scholar
Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H. Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol. 2014;30:1785–96.
Article
CAS
Google Scholar
Lan T, Feng Y, Liao J, Li X, Ding C, Zhang D, et al. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution. J Environ Radioact. 2014;134:6–13.
Article
CAS
Google Scholar
Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun. 2012;3:1–11.
Article
Google Scholar
Mohanta TK, Bae H. The diversity of fungal genome. Biol Proced Online. 2015;17:1–9.
Article
CAS
Google Scholar
Suzuki H, MacDonald J, Syed K, Salamov A, Hori C, Aerts A, et al. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics. 2012;13:1–17.
Article
Google Scholar
Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, et al. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34:1318–46.
Article
CAS
Google Scholar
Barnhart-Dailey MC, Ye D, Hayes DC, Maes D, Simoes CT, Appelhans L, et al. Internalization and accumulation of model lignin breakdown products in bacteria and fungi. Biotechnol Biofuels. 2019;12:1–19.
Article
CAS
Google Scholar
Yaguchi A, Franaszek N, O’Neill K, Lee S, Sitepu I, Boundy-Mills K, et al. Identification of oleaginous yeasts that metabolize aromatic compounds. J Ind Microbiol Biotechnol. 2020;47:801–13.
Article
CAS
Google Scholar
Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA. The plant dehydrins: structure and putative functions. Biochem. 2003;68:945–51.
CAS
Google Scholar
Graether SP, Boddington KF. Disorder and function: a review of the dehydrin protein family. Front Plant Sci. 2014;5:1–12.
Article
Google Scholar
Durairaj P, Hur J-S, Yun H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb Cell Fact. 2016;15:1–16.
Article
Google Scholar
Quistgaard EM, Löw C, Guettou F, Nordlund P. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol. 2016;17:123–32.
Article
CAS
Google Scholar
Mori K, Kamimura N, Masai E. Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Appl Microbiol Biotechnol. 2018;102:4807–16.
Article
CAS
Google Scholar
dos Santos OAL, Gonçalves TA, Sodré V, Vilela N, Tomazetto G, Squina FM, et al. Recombinant expression, purification and characterization of an active bacterial feruloyl-CoA synthase with potential for application in vanillin production. Protein Expr Purif. 2022;197:106–9.
Google Scholar
Gonçalves TA, Sodré V, da Silva SN, Vilela N, Tomazetto G, Araujo JN, et al. Applying biochemical and structural characterization of hydroxycinnamate catabolic enzymes from soil metagenome for lignin valorization strategies. Appl Microbiol Biotechnol. 2022;106:2503–16.
Article
Google Scholar
Sodré V, Araujo JN, Augusto Gonçalves T, Vilela N, Kimus Braz AS, Franco TT, et al. An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies. PLoS ONE. 2019;14:1–21.
Article
Google Scholar
Liberato MV, Araújo JN, Sodré V, Gonçalves TA, Vilela N, Moraes EC, et al. The structure of a prokaryotic feruloyl-CoA hydratase-lyase from a lignin-degrading consortium with high oligomerization stability under extreme pHs. Biochim Biophys Acta. 2020;1868:1–8.
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
Google Scholar
Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. Sequence analysis NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics. 2014;30:566–8.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
Article
CAS
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinforma Appl NOTE. 2011;27(4):578–9.
Article
CAS
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE. 2014;9:1–14.
Article
Google Scholar
Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, et al. MAKER An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008. https://doi.org/10.1101/gr.6743907.
Article
Google Scholar
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:215–25.
Article
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:1471–2210.
Article
Google Scholar
Sima FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. Genome analysis BUSCO assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
Article
Google Scholar
McDowall J, Hunter S. InterPro protein classification. Methods Mol Biol. 2011;694:37–47.
Article
CAS
Google Scholar
Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol Biol. 2007;406:89–112.
CAS
Google Scholar
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families database. Nucleic Acids Res. 2012;38:D211–22.
Article
Google Scholar
Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4 0: Discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
Article
CAS
Google Scholar
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:95–101.
Article
CAS
Google Scholar
Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. BMC Molecular Biology The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006;7:1–14.
Article
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:1–13.
Article
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;7(72):248–54.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Gadanho M, Sampaio JP, Spencer-Martins I. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: R. azoricum sp. Nov. Can J Microbiol. 2001;47:213–21.
Article
CAS
Google Scholar
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database J Biol Databases Curation. 2020;2020:1–21.
Google Scholar
Shanmugam S, Gomes IA, Denadai M, dos Santos LB, de Souza Araújo AA, Narain N, et al. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties. Food Res Int. 2018;108:611–20.
Article
CAS
Google Scholar
He M, Peng G, Xie F, Hong L, Cao Q. Liquid chromatography–high-resolution mass spectrometry with ROI strategy for non-targeted analysis of the in vivo/in vitro ingredients coming from Ligusticum chuanxiong hort. Chromatographia. 2019;82:1069–77.
Article
CAS
Google Scholar
Liu C, Zhang A, Yan GL, Shi H, Sun H, Han Y, et al. High-throughput ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry method for the rapid analysis and characterization of multiple constituents of Radix Polygalae. J Sep Sci. 2017;40:663–70.
Article
CAS
Google Scholar