Huber GW, Iborra S, Corma A: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 2006, 106: 4044-4098. 10.1021/cr068360d
CAS
Google Scholar
Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F: New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 2009, 20: 372-380. 10.1016/j.copbio.2009.05.009
CAS
Google Scholar
Himmel ME, Ruth MF, Wyman CE: Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 1999, 10: 358-364. 10.1016/S0958-1669(99)80065-2
CAS
Google Scholar
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002
CAS
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315: 804-807. 10.1126/science.1137016
CAS
Google Scholar
Mielenz JR: Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 2001, 4: 324-329. 10.1016/S1369-5274(00)00211-3
CAS
Google Scholar
Zhang YHP, Himmel ME, Mielenz JR: Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 2006, 24: 452-481. 10.1016/j.biotechadv.2005.10.002
CAS
Google Scholar
Sjöström E, Alén R: Analytical methods in wood chemistry, pulping, and papermaking. Berlin, Heidelberg, New York: Springer Verlag; 1999.
Google Scholar
Green JW: Wood cellulose. Methods Carbohydr Chem 1963, 3: 9-21.
CAS
Google Scholar
Adams GA, Bishop CT: Polysaccharides associated with alpha-cellulose. Nature 1953, 172: 28-29. 10.1038/172028a0
CAS
Google Scholar
Gupta R, Lee YY: Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 2009, 102: 1570-1581. 10.1002/bit.22195
CAS
Google Scholar
Zhang YH, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2004, 88: 797-824. 10.1002/bit.20282
CAS
Google Scholar
Tanaka M, Nakamura H, Taniguchi M, Morita T, Matsuno R, Kamikubo T: Elucidation of adsorption processes of cellulases during hydrolysis of crystalline cellulose. Appl Microbiol Biotechnol 1986, 23: 263-268. 10.1007/BF00261926
CAS
Google Scholar
Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS: Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 2009, 27: 833-848. 10.1016/j.biotechadv.2009.06.005
CAS
Google Scholar
Palonen H, Tenkanen M, Linder M: Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 1999, 65: 5229-5233.
CAS
Google Scholar
Kyriacou A, Neufeld RJ, Mackenzie CR: Reversibility and competition in the adsorption of Trichoderma reesei cellulase components. Biotechnol Bioeng 1989, 33: 631-637. 10.1002/bit.260330517
CAS
Google Scholar
Ma AZ, Hu Q, Qu YB, Bai ZH, Liu WF, Zhuang GQ: The enzymatic hydrolysis rate of cellulose decreases with irreversible adsorption of cellobiohydrolase I. Enzyme Microb Technol 2008, 42: 543-547. 10.1016/j.enzmictec.2008.02.009
CAS
Google Scholar
Jeoh T, Wilson DB, Walker LP: Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases Ce15A, Ce16B, and Ce19A. Biotechnol Progr 2002, 18: 760-769. 10.1021/bp0200402
CAS
Google Scholar
Beldman G, Voragen AGJ, Rombouts FM, Searlevanleeuwen MF, Pilnik W: Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride . Biotechnol Bioeng 1987, 30: 251-257. 10.1002/bit.260300215
CAS
Google Scholar
Carrard G, Linder M: Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei . Eur J Biochem 1999, 262: 637-643. 10.1046/j.1432-1327.1999.00455.x
CAS
Google Scholar
Linder M, Teeri TT: The roles and function of cellulose-binding domains. J Biotechnol 1997, 57: 15-28. 10.1016/S0168-1656(97)00087-4
CAS
Google Scholar
Grethlein HE: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 1985, 3: 155-160. 10.1038/nbt0285-155
CAS
Google Scholar
Woodward J, Hayes MK, Lee NE: Hydrolysis of cellulose by saturating and non-saturating concentrations of cellulase - implications for synergism. Nat Biotechnol 1988, 6: 301-304. 10.1038/nbt0388-301
CAS
Google Scholar
Medve J, Ståhlberg J, Tjerneld F: Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Appl Biochem Biotechnol 1997, 66: 39-56. 10.1007/BF02788806
CAS
Google Scholar
Stahlberg J, Johansson G, Pettersson G: A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 1991, 9: 286-290. 10.1038/nbt0391-286
Google Scholar
Linder M, Teeri TT: The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. PNAS 1996, 93: 12251-12255. 10.1073/pnas.93.22.12251
CAS
Google Scholar
Hoshino E, Kanda T, Sasaki Y, Nisizawa K: Adsorption mode of exo- and endo-cellulases from Irpex lacteus ( Polyporus tulipiferae ) on cellulose with different crystallinities. J Biochem 1992, 111: 600-605.
CAS
Google Scholar
Kumar R, Wyman CE: Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 2009, 103: 252-267. 10.1002/bit.22258
CAS
Google Scholar
Ooshima H, Sakata M, Harano Y: Adsorption of cellulase from Trichoderma viride on cellulose. Biotechnol Bioeng 1983, 25: 3103-3114. 10.1002/bit.260251223
CAS
Google Scholar
Medve J, Stahlberg J, Tjerneld F: Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 1994, 44: 1064-1073. 10.1002/bit.260440907
CAS
Google Scholar
Kim DW, Kim TS, Jeong YK, Lee JK: Adsorption kinetics and behaviors of cellulase components on microcrystalline cellulose. J Ferment Bioeng 1992, 73: 461-466. 10.1016/0922-338X(92)90138-K
CAS
Google Scholar
Peri S, Karra S, Lee YY, Karim MN: Modeling intrinsic kinetics of enzymatic cellulose hydrolysis. Biotechnol Progr 2007, 23: 626-637. 10.1021/bp060322s
CAS
Google Scholar
Moon H, Kim JS, Oh KK, Kim SW, Hong SI: Kinetic modeling of simultaneous saccharification and fermentation for ethanol production using steam-exploded wood with glucose- and cellobiose-fermenting yeast, Brettanomyces custersii . J Microbiol Biotechnol 2001, 11: 598-606.
CAS
Google Scholar
Gan Q, Allen SJ, Taylor G: Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochem 2003, 38: 1003-1018. 10.1016/S0032-9592(02)00220-0
CAS
Google Scholar
Shin D, Yoo A, Kim SW, Yang DR: Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii . J Microbiol Biotechnol 2006, 16: 1355-1361.
CAS
Google Scholar
Cao Y, Tan H: Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 2005, 36: 314-317. 10.1016/j.enzmictec.2004.09.002
CAS
Google Scholar
Pala H, Mota M, Gama FM: Enzymatic modification of paper fibres. Biocatal Biotransform 2002, 20: 353-361. 10.1080/1024242021000032494
CAS
Google Scholar
Dourado F, Mota M, Pala H, Gama FM: Effect of cellulase adsorption on the surface and interfacial properties of cellulose. Cellulose 1999, 6: 265-282. 10.1023/A:1009251722598
CAS
Google Scholar
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 2010, 3: 10. 10.1186/1754-6834-3-10
Google Scholar
Evans R, Wearne RH, Wallis AFA: Molecular-weight distribution of cellulose as its tricarbanilate by high-performance size exclusion chromatography. J Appl Polym Sci 1989, 37: 3291-3303. 10.1002/app.1989.070371202
CAS
Google Scholar
Bowen P: Particle size distribution measurement from millimeters to nanometers, and from rods to platelets. J Disper Sci Technol 2002, 23: 631-662. 10.1081/DIS-120015368
CAS
Google Scholar
Henrissat B, Driguez H, Viet C, Schulein M: Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 1985, 3: 722-726. 10.1038/nbt0885-722
CAS
Google Scholar
Melander W, Horvath C: Salt effects on hydrophobic interactions in precipitation and chromatography of proteins - interpretation of lyotropic series. Arch Biochem Biophys 1977, 183: 200-215. 10.1016/0003-9861(77)90434-9
CAS
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 1985, 150: 76-85. 10.1016/0003-2697(85)90442-7
CAS
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227: 680-685. 10.1038/227680a0
CAS
Google Scholar
Wilson CM: Staining of proteins on gels: comparisons of dyes and procedures. Methods Enzymol 1983, 91: 236-247. full_text
CAS
Google Scholar
Kumar R, Wyman CE: An improved method to directly estimate cellulase adsorption on biomass solids. Enzyme Microb Technol 2008, 42: 426-433. 10.1016/j.enzmictec.2007.12.005
CAS
Google Scholar
Copeland RA: Enzymes. 2nd edition. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons; 2000. full_text
Google Scholar
Ghose TK: Measurement of cellulase activities. Pure Appl Chem 1987, 59: 257-268. 10.1351/pac198759020257
CAS
Google Scholar
Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y: Cellulase kinetics as a function of cellulose pretreatment. Metab Eng 2008, 10: 370-381. 10.1016/j.ymben.2008.06.008
CAS
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31: 426-428. 10.1021/ac60147a030
CAS
Google Scholar
Wood TM, Bhat KM: Methods for measuring cellulase activities. Method Enzymol 1988, 160: 87-112. full_text
CAS
Google Scholar
Kim DW, Jeong YK, Jang YH, Lee JK: Purification and characterization of endoglucanase and exoglucanase components from Trichoderma viride . J Ferment Bioeng 1994, 77: 363-369. 10.1016/0922-338X(94)90005-1
CAS
Google Scholar
Hermann R, Lehmann M, Büchs J: Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 2003, 81: 178-186. 10.1002/bit.10456
CAS
Google Scholar
Gama FM, Vilanova M, Mota M: Exo- and endo-glucanolytic activity of cellulases purified from Trichoderma reesei . Biotechnol Tech 1998, 12: 677-681. 10.1023/A:1008808803109
CAS
Google Scholar
Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot J-C, Monot F, Asther M: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 2008, 1: 18. 10.1186/1754-6834-1-18
Google Scholar
Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Progr 2007, 23: 1270-1276. 10.1021/bp070329p
CAS
Google Scholar
Tan HY, Ng TW, Liew OW: Effects of light spectrum in flatbed scanner densitometry of stained polyacrylamide gels. Biotechniques 2007, 42: 474-478. 10.2144/000112402
CAS
Google Scholar
Schülein M: Cellulases of Trichoderma reesei . Methods Enzymol 1988, 160: 234-242. full_text
Google Scholar
Shoemaker S, Watt K, Tsitovsky G, Cox R: Characterization and properties of cellulases purified from Trichoderma reesei strain-L27. Nat Biotechnol 1983, 1: 687-690. 10.1038/nbt1083-687
CAS
Google Scholar
Kubicek CP: The cellulase proteins of Trichoderma reesei : structure, multiplicity, mode of action and regulation of formation. Adv Biochem Eng/Biotechnol 1992, 45: 1-27. full_text
CAS
Google Scholar
Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS: Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 2008, 1: 10. 10.1186/1754-6834-1-10
Google Scholar
Schuchardt S, Sickmann A: Protein identification using mass spectrometry: a method overview. EXS 2007, 97: 141-170.
CAS
Google Scholar
Grosse-Coosmann F, Boehm AM, Sickmann A: Efficient analysis and extraction of MS/MS result data from Mascot result files. BMC Bioinf 2005, 6: 290. 10.1186/1471-2105-6-290
Google Scholar
Medve J, Lee D, Tjerneld F: Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography. J Chromatogr A 1998, 808: 153-165. 10.1016/S0021-9673(98)00132-0
CAS
Google Scholar
Ellouz S, Durand H, Tiraby G: Analytical separation of Trichoderma reesei cellulases by ion-exchange fast protein liquid-chromatography. J Chromatogr 1987, 396: 307-317. 10.1016/S0021-9673(01)94068-3
CAS
Google Scholar
Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G: The difference in affinity between 2 fungal cellulose-binding domains is dominated by a single amino-acid substitution. FEBS Lett 1995, 372: 96-98. 10.1016/0014-5793(95)00961-8
CAS
Google Scholar
Nidetzky B, Steiner W, Claeyssens M: Cellulose hydrolysis by the cellulases from Trichoderma reesei : adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis. Biochem J 1994,303(Pt 3):817-823.
CAS
Google Scholar
Hunter AK, Carta G: Protein adsorption on novel acrylamido-based polymeric ion-exchangers. IV. Effects of protein size on adsorption capacity and rate. J Chromatogr A 2002, 971: 105-116. 10.1016/S0021-9673(02)01027-0
CAS
Google Scholar
Oberholzer MR, Lenhoff AM: Protein adsorption isotherms through colloidal energetics. Langmuir 1999, 15: 3905-3914. 10.1021/la981199k
CAS
Google Scholar
Kongruang S, Han M, Breton C, Penner M: Quantitative analysis of cellulose-reducing ends. Appl Biochem Biotechnol 2004, 113: 213-231. 10.1385/ABAB:113:1-3:213
Google Scholar
Decker SR, Adney WS, Jennings E, Vinzant TB, Himmel ME: Automated filter paper assay for determination of cellulase activity. Appl Biochem Biotech 2003, 105: 689-703. 10.1385/ABAB:107:1-3:689
Google Scholar
Coward-Kelly G, Aiello-Mazzari C, Kim S, Granda C, Holtzapple M: Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnol Bioeng 2003, 82: 745-749. 10.1002/bit.10620
CAS
Google Scholar
Reinikainen T, Teleman O, Teeri TT: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei . Proteins 1995, 22: 392-403. 10.1002/prot.340220409
CAS
Google Scholar
Srisodsuk M, Reinikainen T, Penttila M, Teeri TT: Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. J Biol Chem 1993, 268: 20756-20761.
CAS
Google Scholar
Lee SB, Shin HS, Ryu DDY, Mandels M: Adsorption of cellulase on cellulose: Effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng 1982, 24: 2137-2153. 10.1002/bit.260241003
CAS
Google Scholar
Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD: Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 2002, 99: 641-654. 10.1385/ABAB:98-100:1-9:641
Google Scholar
Nidetzky B, Steiner W: A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 1993, 42: 469-479. 10.1002/bit.260420410
CAS
Google Scholar
Lee SB, Kim IH, Ryu DD, Taguchi H: Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 1983, 25: 33-51. 10.1002/bit.260250105
CAS
Google Scholar
Kim DW, Jeong YK, Lee JK: Adsorption kinetics of exoglucanase in combination with endoglucanase from Trichoderma viride on microcrystalline cellulose and its influence on synergistic degradation. Enzyme Microb Technol 1994, 16: 649-658. 10.1016/0141-0229(94)90085-X
CAS
Google Scholar
Boussaid A, Saddler JN: Adsorption and activity profiles of cellulases during the hydrolysis of two Douglas fir pulps. Enzyme Microb Technol 1999, 24: 138-143. 10.1016/S0141-0229(98)00096-9
CAS
Google Scholar
Singh A, Kumar PKR, Schügerl K: Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol 1991, 18: 205-212. 10.1016/0168-1656(91)90248-T
CAS
Google Scholar
Medve J, Karlsson J, Lee D, Tjerneld F: Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei : Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 1998, 59: 621-634. 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
CAS
Google Scholar
Kim DW, Jang YH, Jeong YK: Adsorption kinetics and behaviour of two cellobiohydrolases from Trichoderma reesei on microcrystalline cellulose. Biotechnol Appl Biochem 1998, 27: 97-102.
CAS
Google Scholar
Ingesson H, Zacchi G, Yang B, Esteghlalian AR, Saddler JN: The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J Biotechnol 2001, 88: 177-182. 10.1016/S0168-1656(01)00273-5
CAS
Google Scholar
Tengborg C, Galbe M, Zacchi G: Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol Progr 2001, 17: 110-117. 10.1021/bp000145+
CAS
Google Scholar
Enayati N, Parulekar SJ: Enzymatic saccharification of soybean hull-based materials. Biotechnol Progr 1995, 11: 708-711. 10.1021/bp00036a017
CAS
Google Scholar
Reese ET: Shear inactivation of cellulases of Trichoderma reesei . Enzyme Microb Technol 1980, 2: 239-240. 10.1016/0141-0229(80)90054-X
CAS
Google Scholar
Mukataka S, Tada M, Takahashi J: Effects of agitation on enzymatic hydrolysis of cellulose in a stirred-tank reactor. J Ferment Technol 1983, 61: 615-621.
CAS
Google Scholar
Reese ET, Mandels M: Stability of the cellulase of Trichoderma reesei under use conditions. Biotechnol Bioeng 1980, 22: 323-335. 10.1002/bit.260220207
CAS
Google Scholar
Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A: Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004, 70: 1207-1212. 10.1128/AEM.70.2.1207-1212.2004
CAS
Google Scholar
Yanase S, Yamada R, Kaneko S, Noda H, Hasunuma T, Tanaka T, Ogino C, Fukuda H, Kondo A: Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J 2010, 5: 449-455. 10.1002/biot.200900291
CAS
Google Scholar
van Zyl WH, Lynd LR, den Haan R, McBride JE: Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae . Adv Biochem Eng Biotechnol 2007, 108: 205-235.
CAS
Google Scholar
Khaw TS, Katakura Y, Ninomiya K, Moukamnerd C, Kondo A, Ueda M, Shioya S: Enhancement of ethanol production by promoting surface contact between starch granules and arming yeast in direct ethanol fermentation. J Biosci Bioeng 2007, 103: 95-97. 10.1263/jbb.103.95
CAS
Google Scholar
Gruno M, Valjamae P, Pettersson G, Johansson G: Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 2004, 86: 503-511. 10.1002/bit.10838
CAS
Google Scholar
Holtzapple M, Cognata M, Shu Y, Hendrickson C: Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 1990, 36: 275-287. 10.1002/bit.260360310
CAS
Google Scholar
Kruus K, Andreacchi A, Wang WK, Wu JHD: Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol 1995, 44: 399-404. 10.1007/BF00169935
CAS
Google Scholar
Andrade JD, Hlady V: Protein adsorption and materials biocompatibility - a tutorial review and suggested hypotheses. Adv Polym Sci 1986, 79: 1-63.
CAS
Google Scholar
Pangarkar VG, Yawalkar AA, Sharma MM, Beenackers AACM: Particle-liquid mass transfer coefficient in two-/three-phase stirred tank reactors. Ind Eng Chem Res 2002, 41: 4141-4167. 10.1021/ie010933j
CAS
Google Scholar
Zwietering TN: Suspending of solid particles in liquid by agitators. Chem Eng Sci 1958, 8: 244-253. 10.1016/0009-2509(58)85031-9
CAS
Google Scholar
Kato Y, Hiraoka S, Tada Y, Shirota T, Koh ST, Lee YS, Yamaguchi T: Complete suspension of solid particles in a shaking vessel. Kagaku Kogaku Ronbun 1995, 21: 948-952.
CAS
Google Scholar
Huang AA: Kinetic studies on insoluble cellulose-cellulase system. Biotechnol Bioeng 1975, 17: 1421-1433. 10.1002/bit.260171003
CAS
Google Scholar
Teeri TT: Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 1997, 15: 160-167. 10.1016/S0167-7799(97)01032-9
Google Scholar
Kruus K, Wang WK, Ching JT, Wu JHD: Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 1995, 177: 1641-1644.
CAS
Google Scholar
Kumar R, Wyman CE: Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Progr 2009, 25: 807-819. 10.1002/btpr.153
CAS
Google Scholar
Zhang YHP, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 2007, 97: 214-223. 10.1002/bit.21386
CAS
Google Scholar
Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS: Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS J 2010, 277: 1571-1582. 10.1111/j.1742-4658.2010.07585.x
CAS
Google Scholar