Aro N, Pakula TM, Penttila ME: Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 2005, 29: 719-739.
Article
CAS
Google Scholar
Horn S, Vaaje-Kolstad G, Westereng B, Eijsink VG: Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 2012, 5: 45.
Article
CAS
Google Scholar
Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 2010, 46: 541-549.
Article
CAS
Google Scholar
Barta Z, Kovacs K, Reczey K, Zacchi G: Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Research 2010, 2010: 734182.
Article
Google Scholar
Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G: Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 2010, 89: S20-S28.
Article
CAS
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109: 1083-1087.
Article
CAS
Google Scholar
Jourdier E, Ben Chaabane F, Poughon L, Larroche C, Monot F: Simple kinetic model of cellulase production by Trichoderma reesei for productivity or yield maximization. Chem Eng Trans 2012, 27: 313-318.
Google Scholar
Tolan J, Foody B: Cellulase from submerged fermentation. In Recent Progress in Bioconversion of Lignocellulosics. 65th edition. Edited by: Tsao G. Berlin: Springer; 1999:41-67.
Chapter
Google Scholar
Jourdier E, Poughon L, Larroche C, Monot F, Ben Chaabane F: A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains. Microb Cell Fact 2012, 11: 70.
Article
CAS
Google Scholar
Persson I, Tjerneld F, Hahn-Hägerdal B: Fungal cellulolytic enzyme production: a review. Process Biochem 1991, 26: 65-74.
Article
CAS
Google Scholar
Pourquié J, Warzywoda M, Chevron F, Thery D, Lonchamp D, Vandecasteele JP: Scale up of cellulase production and utilization. In FEMS Symposium n°43: Biochemistry and Genetics of Cellulose Degradation. Edited by: Aubert J-P, Beguin P, Millet J. London: Academic Press; 1988:71-86.
Google Scholar
Warzywoda M, Larbre E, Pourquié J: Production and characterization of cellulolytic enzymes from Trichoderma reesei grown on various carbon sources. Bioresour Technol 1992, 39: 125-130.
Article
CAS
Google Scholar
Philippidis GP: Cellulase production technology. In Enzymatic Conversion of Biomass for Fuels Production. 566th edition. Edited by: Himmel M, Baker JO, Overend RP. Washington, DC: American Chemical Society; 1994:188-217.
Chapter
Google Scholar
Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M: Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 1991, 36: 51-65.
Article
CAS
Google Scholar
Dashtban M, Maki M, Leung KT, Mao C, Qin W: Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 2010, 30: 302-309.
Article
CAS
Google Scholar
Juhasz T, Szengyel Z, Reczey K, Siika-Aho M, Viikari L: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 2005, 40: 3519-3525.
Article
CAS
Google Scholar
Jun H, Kieselbach T, Jonsson L: Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Fact 2011, 10: 68.
Article
CAS
Google Scholar
Olsson L, Christensen T, Hansen KP, Palmqvist EA: Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb Technol 2003, 33: 612-619.
Article
CAS
Google Scholar
Sipos B, Benko Z, Dienes D, Reczey K, Viikari L, Siika-Aho M: Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol 2010, 161: 347-364.
Article
CAS
Google Scholar
Xiong H, Turunen O, Pastinen O, Leisola M, von Weymarn N: Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or D-glucose mixtures. Appl Microbiol Biotechnol 2004, 64: 353-358.
Article
CAS
Google Scholar
Xiong HR, von Weymarn N, Turunen O, Leisola M, Pastinen O: Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresour Technol 2005, 96: 753-759.
Article
CAS
Google Scholar
Ballerini D, Desmarquest JP, Pourquié J, Nativel F, Rebeller M: Ethanol production from Lignocellulosics: large scale experimentation and economics. Bioresour Technol 1994, 50: 17-23.
Article
CAS
Google Scholar
Ike M, Park JY, Tabuse M, Tokuyasu K: Controlled preparation of cellulases with xylanolytic enzymes from Trichoderma reesei ( Hypocrea jecorina ) by continuous-feed cultivation using soluble sugars. Biosci Biotechnol Biochem 2013, 77: 161-166.
Article
CAS
Google Scholar
Durand H, Clanet M, Tiraby G: Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb Technol 1988, 10: 341-346.
Article
CAS
Google Scholar
Ghose TK: Measurement of cellulase activities. Pure Appl Chem 1987, 59: 257-268.
CAS
Google Scholar
Ghose TK, Bisaria VS: Measurement of hemicellulase activities - Part 1: Xylanases. Pure Appl Chem 1987, 59: 1739-1752.
CAS
Google Scholar
Seiboth B, Herold S, Kubicek CP: Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei . In Reprogramming Microbial Metabolic Pathways. 64th edition. Edited by: Wang X, Chen J, Quinn P. Netherlands: Springer; 2012:367-390.
Chapter
Google Scholar
Mandels M, Reese ET: Induction of cellulase in fungi by cellobiose. J Bacteriol 1960, 79: 816-826.
CAS
Google Scholar
Fritscher C, Messner R, Kubicek CP: Cellobiose metabolism and cellobiohydrolase I biosynthesis by Trichoderma reesei . Exp Mycol 1990, 14: 405-415.
Article
CAS
Google Scholar
Kubicek CP, Messner R, Gruber F, Mandels M, Kubicek-Pranz EM: Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei . Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease. J Biol Chem 1993, 268: 19364-19368.
CAS
Google Scholar
Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W: Differential involvement of beta-Glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell 2012, 11: 1371-1381.
Article
CAS
Google Scholar
Morikawa Y, Ohashi T, Mantani O, Okada H: Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 1995, 44: 106-111.
Article
CAS
Google Scholar
Ilmen M, Saloheimo A, Onnela ML, Penttila ME: Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei . Appl Environ Microbiol 1997, 63: 1298-1306.
CAS
Google Scholar
Pakula TM, Salonen K, Uusitalo J, Penttila ME: The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei . Microbiology 2005, 151: 135-143.
Article
CAS
Google Scholar
Bura R, Chandra R, Saddler J: Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog 2009, 25: 315-322.
Article
CAS
Google Scholar
Hu J, Arantes V, Saddler J: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 2011, 4: 36.
Article
CAS
Google Scholar
Zhang J, Tang M, Viikari L: Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 2012, 121: 8-12.
Article
CAS
Google Scholar
Benko Z, Siika-Aho M, Viikari L, Reczey K: Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enzyme Microb Technol 2008, 43: 109-114.
Article
CAS
Google Scholar
Kumar R, Wyman CE: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 2009, 25: 302-314.
Article
CAS
Google Scholar
Shi J, Ebrik MA, Yang B, Garlock RJ, Balan V, Dale BE, Ramesh Pallapolu V, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, Warner RE, Wyman CE: Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 2011, 102: 11080-11088.
Article
CAS
Google Scholar
Qing Q, Wyman CE: Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresour Technol 2011, 102: 1359-1366.
Article
CAS
Google Scholar
Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 2010, 101: 9624-9630.
Article
CAS
Google Scholar
Qing Q, Wyman C: Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 2011, 4: 18.
Article
CAS
Google Scholar
Penttilä PA, Várnai A, Pere J, Tammelin T, Salmén L, Siika-aho M, Viikari L, Serimaa R: Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour Technol 2013, 129: 135-141.
Article
Google Scholar
Várnai A, Huikko L, Pere J, Siika-aho M, Viikari L: Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 2011, 102: 9096-9104.
Article
Google Scholar
Gao D, Uppugundla N, Chundawat S, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale B: Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 2011, 4: 5.
Article
CAS
Google Scholar
Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S: Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol Biofuels 2012, 5: 9.
Article
CAS
Google Scholar
Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD: Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 2010, 3: 22.
Article
Google Scholar
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 2013, 127: 500-507.
Article
CAS
Google Scholar
Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M: Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 2008, 1: 18.
Article
Google Scholar
Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y: Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular beta-glucosidase i. Biosci Biotechnol Biochem 2009, 73: 1083-1089.
Article
CAS
Google Scholar
Zhang J, Zhong Y, Zhao X, Wang T: Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter. Bioresour Technol 2010, 101: 9815-9818.
Article
CAS
Google Scholar
Wang B, Xia L: High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei . Bioresour Technol 2011, 102: 4568-4572.
Article
CAS
Google Scholar
Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani JI, Kawaguchi T, Morikawa Y, Ogasawara W: Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus beta-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 2012, 109: 92-99.
Article
CAS
Google Scholar
Ma L, Zhang J, Zou G, Wang C, Zhou Z: Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens . Enzyme Microb Technol 2011, 49: 366-371.
Article
CAS
Google Scholar
Dashtban M, Qin W: Overexpression of an exotic thermotolerant beta-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Fact 2012, 11: 63.
Article
CAS
Google Scholar
Ayrinhac C, Margeot A, Ferreira NL, Ben Chaabane F, Monot F, Ravot G, Sonet JM, Fourage L: Improved saccharification of wheat straw for biofuel production using an Engineered Secretome of Trichoderma reesei . Org Process Res Dev 2011, 15: 275-278.
Article
CAS
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193: 265-275.
CAS
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31: 426-428.
Article
CAS
Google Scholar
Xiao Z, Storms R, Tsang A: Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng 2004, 88: 832-837.
Article
CAS
Google Scholar