Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A. 2006;103:11206–10. doi:10.1073/pnas.0604600103.
Article
CAS
Google Scholar
Atsumi S, Liao JC. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol. 2008;19:414–9. doi:10.1016/j.copbio.2008.08.008.
Article
CAS
Google Scholar
Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488:320–8. doi:10.1038/nature11478.
Article
CAS
Google Scholar
Dunn RO, Knothe G. Alternative diesel fuels from vegetable oils and animal fats. J Oleo Sci. 2001;50:415–26.
Article
CAS
Google Scholar
Knothe G, Matheaus AC, Ryan III TW. Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel. 2003;82:971–5.
Article
CAS
Google Scholar
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463:559–62. doi:10.1038/nature08721.
Article
CAS
Google Scholar
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels. 2014;7:7.
Article
Google Scholar
Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol. 2011;22:775–83. doi:10.1016/j.copbio.2011.04.024.
Article
CAS
Google Scholar
De Jong B, Siewers V, Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol. 2012;23:624–30. doi:10.1016/j.copbio.2011.11.021.
Article
Google Scholar
Nielsen J, Larsson C, van Maris A, Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013;24:398–404. doi:10.1016/j.copbio.2013.03.023.
Article
CAS
Google Scholar
Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, et al. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng. 2015;28:82–90.
Article
CAS
Google Scholar
Li X, Guo D, Cheng Y, Zhu F, Deng Z, Liu T. Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2014;111:1841–52. doi:10.1002/bit.25239.
Article
CAS
Google Scholar
Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng. 2008;10:333–9. doi:10.1016/j.ymben.2008.08.006.
Article
CAS
Google Scholar
Liu T, Vora H, Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng. 2010;12:378–86. doi:10.1016/j.ymben.2010.02.003.
Article
CAS
Google Scholar
Ruffing AM, Jones HD. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng. 2012;109:2190–9.
Article
CAS
Google Scholar
Handke P, Lynch SA, Gill RT. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng. 2011;13:28–37. doi:10.1016/j.ymben.2010.10.007.
Article
CAS
Google Scholar
Yu X, Liu T, Zhu F, Khosla C. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci. 2011;108:18643–8.
Article
CAS
Google Scholar
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476:355–9. doi:10.1038/nature10333.
Article
CAS
Google Scholar
Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, et al. Modular optimization of multi-gene pathways for fatty acids production in E coli. Nat Commun. 2013;4:1409. doi:10.1038/ncomms2425.
Article
Google Scholar
Kalscheuer R, Uthoff S, Luftmann H, Steinbüchel A. In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from acinetobacter Calcoaceticus ADP1. Eur J Lipid Sci Technol. 2003;105:578–84. doi:10.1002/ejlt.200300840.
Article
CAS
Google Scholar
Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A. The wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol. 2005;187:1369–76. doi:10.1128/JB.187.4.1369-1376.2005.
Article
Google Scholar
Kalscheuer R, Stolting T, Steinbüchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology. 2006;152:2529–36. doi:10.1099/mic.0.29028-0.
Article
CAS
Google Scholar
Duan Y, Zhu Z, Cai K, Tan X, Lu X. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS ONE. 2011;6, e20265. doi:10.1371/journal.pone.0020265.
Article
CAS
Google Scholar
Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol. 2012;30:354–9. doi:10.1038/nbt.2149.
Article
CAS
Google Scholar
Thompson RA, Trinh CT. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol Bioeng. 2014;111:2200–8. doi:10.1002/bit.25292.
Article
CAS
Google Scholar
Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels. 2012;5:7. doi:10.1186/1754-6834-5-7.
Article
CAS
Google Scholar
Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng. 2014;111:1740–7. doi:10.1002/bit.25234.
Article
CAS
Google Scholar
Rodriguez GM, Tashiro Y, Atsumi S. Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol. 2014;10:259–65. doi:10.1038/nchembio.1476.
Article
CAS
Google Scholar
Layton DS, Trinh CT. Engineering modular ester fermentative pathways in Escherichia coli. Metab Eng. 2014;26C:77–88. doi:10.1016/j.ymben.2014.09.006.
Article
Google Scholar
Tai YS, Xiong M, Zhang K. Engineered biosynthesis of medium-chain esters in Escherichia coli. Metab Eng. 2015;27:20–8. doi:10.1016/j.ymben.2014.10.004.
Article
CAS
Google Scholar
Guo D, Zhu J, Deng Z, Liu T. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab Eng. 2014;22:69–75. doi:10.1016/j.ymben.2014.01.003.
Article
CAS
Google Scholar
Lee I, Johnson LA, Hammond EG. Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J Am Oil Chem Soc. 1995;72:1155–60.
Article
CAS
Google Scholar
Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol. 2005;86:1059–70. doi:10.1016/j.fuproc.2004.11.002.
Article
CAS
Google Scholar
Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci. 2009;2:759. doi:10.1039/b903941d.
Article
CAS
Google Scholar
Dunn R, Bagby M. Low-temperature properties of triglyceride-based diesel fuels: transesterified methyl esters and petroleum middle distillate/ester blends. J Am Oil Chem Soc. 1995;72:895–904.
Article
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–9. doi:10.1038/nature06450.
Article
CAS
Google Scholar
Connor MR, Liao JC. Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol. 2008;74:5769–75. doi:10.1128/AEM.00468-08.
Article
CAS
Google Scholar
Cann AF, Liao JC. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol. 2008;81:89–98. doi:10.1007/s00253-008-1631-y.
Article
CAS
Google Scholar
Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol. 2010;85:651–7. doi:10.1007/s00253-009-2085-6.
Article
CAS
Google Scholar
Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, et al. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci. 2013;110:7636–41.
Article
CAS
Google Scholar
Haushalter RW, Kim W, Chavkin TA, The L, Garber ME, Nhan M, et al. Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties. Metab Eng. 2014;26C:111–8. doi:10.1016/j.ymben.2014.09.002.
Article
Google Scholar
Jiang W, Jiang Y, Bentley GJ, Liu D, Xiao Y, Zhang F. Enhanced production of branched‐chain fatty acids by replacing β‐ketoacyl‐(acyl‐carrier‐protein) synthase III (FabH). Biotechnol Bioeng. 2015. doi:10.1002/bit.25583.
Google Scholar
Cho H, Cronan JE. Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem. 1995;270:4216–9.
Article
CAS
Google Scholar
Zhang X, Li M, Agrawal A, San KY. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng. 2011;13:713–22. doi:10.1016/j.ymben.2011.09.007.
Article
CAS
Google Scholar
Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, et al. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels. 2012;5:76–88.
Article
CAS
Google Scholar
Choi K-H, Heath RJ, Rock CO. β-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol. 2000;182:365–70.
Article
CAS
Google Scholar
Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977;41:391.
CAS
Google Scholar
Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol. 1994;176:7320–7.
CAS
Google Scholar
Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014;21:103–13. doi:10.1016/j.ymben.2013.07.003.
Article
CAS
Google Scholar
Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energy. 2014;115:226–32. doi:10.1016/j.apenergy.2013.10.003.
Article
Google Scholar
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22:249–70. doi:10.1002/yea.1208.
Article
CAS
Google Scholar
Yan J, Zheng X, Du L, Li S. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol Biofuels. 2014;7:55.
Article
Google Scholar
Foglia TA, Nelson LA, Dunn RO, Marmer WN. Low-temperature properties of alkyl esters of tallow and grease. J Am Oil Chem Soc. 1997;74:951–5.
Article
CAS
Google Scholar
Zhang Y, Van Gerpen JH. Combustion analysis of esters of soybean oil in a diesel engine: SAE Technical Paper 1996. doi:10.4271/960765
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009;5:593–9. doi:10.1038/nchembio.186.
Article
CAS
Google Scholar
Stöveken T, Steinbüchel A. Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed. 2008;47:3688–94. doi:10.1002/anie.200705265.
Article
Google Scholar
Wältermann M, Stöveken T, Steinbüchel A. Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases. Biochimie. 2007;89:230–42. doi:10.1016/j.biochi.2006.07.013.
Article
Google Scholar
Barney BM, Mann RL, Ohlert JM. Identification of a residue affecting fatty alcohol selectivity in wax ester synthase. Appl Environ Microbiol. 2013;79:396–9. doi:10.1128/AEM.02523-12.
Article
CAS
Google Scholar
Li Y, Zhao Z, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol. 2007;41:312–7. doi:10.1016/j.enzmictec.2007.02.008.
Article
Google Scholar
Moser BR. Biodiesel production, properties, and feedstocks. Vitro Cell Dev Biol Plant. 2009;45:229–66. doi:10.1007/s11627-009-9204-z.
Article
CAS
Google Scholar