Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172
Article
CAS
Google Scholar
Teugjas H, Valjamae P (2013) Product inhibition of cellulases studied with C-14-labeled cellulose substrates. Biotechnol Biofuels 6:104
Article
CAS
Google Scholar
Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16
Article
Google Scholar
Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv 28(3):407–425
Article
CAS
Google Scholar
Hu XJ, Robin S, O’Connell S, Walsh G, Wall JG (2010) Engineering of a fungal beta-galactosidase to remove product inhibition by galactose. Appl Microbiol Biotechnol 87(5):1773–1782
Article
CAS
Google Scholar
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194
Article
CAS
Google Scholar
Zhu M, Sun W, Wang Y, Meng J, Zhang D, Guo T et al (2014) Engineered cytidine triphosphate synthetase with reduced product inhibition. Protein Eng Des Sel 27(7):225–233
Article
CAS
Google Scholar
Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336(1):263–273
Article
CAS
Google Scholar
Aroul-Selvam R, Hubbard T, Sasidharan R (2004) Domain insertions in protein structures. J Mol Biol 338(4):633–641
Article
CAS
Google Scholar
Edwards WR, Busse K, Allemann RK, Jones DD (2008) Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res 36(13):e78
Article
Google Scholar
Paes G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30(3):564–592
Article
CAS
Google Scholar
Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13(13):101–131
Article
CAS
Google Scholar
Zhang JH, Tuomainen P, Siika-aho M, Viikari L (2011) Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol 102(19):9090–9095
Article
CAS
Google Scholar
Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23(4):411–456
Article
CAS
Google Scholar
Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591
Article
CAS
Google Scholar
Qi BK, Chen XR, Yi S, Wan YH (2014) Inhibition of cellulase, b-glucosidase, and xylanase activities and enzymatic hydrolysis of dilute acid pretreated wheat straw by acetone–butanol–ethanol fermentation products. Environ Prog Sustain Energy 33(2):497–503
Article
CAS
Google Scholar
Shekiro J, Kuhn EM, Selig MJ, Nagle NJ, Decker SR, Elander RT (2012) Enzymatic conversion of xylan residues from dilute acid-pretreated corn stover. Appl Biochem Biotechnol 168(2):421–433
Article
CAS
Google Scholar
Khankal R, Chin JW, Cirino PC (2008) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134(3–4):246–252
Article
CAS
Google Scholar
Ahlem C, Huisman W, Neslund G, Dahms AS (1982) Purification and Properties of a Periplasmic d-Xylose-Binding Protein from Escherichia-coli K-12. J Biol Chem 257(6):2926–2931
CAS
Google Scholar
Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20(1):17–25
Article
CAS
Google Scholar
Schreier B, Stumpp C, Wiesner S, Hocker B (2009) Computational design of ligand binding is not a solved problem. Proc Natl Acad Sci USA 106(44):18491–18496
Article
CAS
Google Scholar
Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11(11):1483–1487
Article
CAS
Google Scholar
Tullman J (2011) Design rules for protein switch construction and the creation of periplasmic binding protein-beta-lactamase switches. The Johns Hopkins University, Baltimore
Google Scholar
Kanwar M, Wright RC, Date A, Tullman J, Ostermeier M (2013) Protein switch engineering by domain insertion. Methods Protein Des 523:369–388
Article
Google Scholar
Fan F, Binkowski BF, Butler BL, Stecha PF, Lewils MK, Wood KV (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem Biol 3(6):346–351
Article
CAS
Google Scholar
Liu T, Zou W, Liu LM, Chen J (2012) A constraint-based model of Scheffersomyces stipitis for improved ethanol production. Biotechnol Biofuels 5:72
Article
CAS
Google Scholar
Quiroz-Castañeda RE, Folch-Mallol JL (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Chandel A (ed) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. InTech, pp 119–155
Dashtban M, Maki M, Leung KT, Mao CQ, Qin WS (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 30(4):302–309
Article
CAS
Google Scholar
Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H et al (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381–388
Article
CAS
Google Scholar
Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 99(22):14116–14121
Article
CAS
Google Scholar
Cheung LSL, Kanwar M, Ostermeier M, Konstantopoulos K (2012) A hot-spot motif characterizes the interface between a designed ankyrin-repeat protein and its target ligand. Biophys J 102(3):407–416
Article
CAS
Google Scholar
Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ et al (2007) Construction of the bifunctional enzyme cellulase-beta-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Lett 29(6):931–936
Article
CAS
Google Scholar
Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ et al (2006) Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28(22):1857–1862
Article
CAS
Google Scholar
Lu P, Feng MG, Li WF, Hu CX (2006) Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced beta-glucanase and xylanase expressed in Escherichia coli. FEMS Microbiol Lett 261(2):224–230
Article
CAS
Google Scholar
Furtado GP, Ribeiro LF, Lourenzoni MR, Ward RJ (2012) A designed bifunctional laccase/-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse. Protein Eng Des Sel 26:15–23
Article
Google Scholar
Ribeiro LF, Furtado GP, Lourenzoni MR, Costa-Filho AJ, Santos CR, Nogueira SCP et al (2011) Engineering bifunctional laccase-xylanase chimeras for improved catalytic performance. J Biol Chem 286:43026–43038
Article
CAS
Google Scholar
Guntas G, Mansell TJ, Kim JR, Ostermeier M (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci USA 102(32):11224–11229
Article
CAS
Google Scholar
Lutz S (2010) Beyond directed evolution-semi-rational protein engineering and design. Curr Opin Biotechnol 21(6):734–743
Article
CAS
Google Scholar
Mills BM, Chong LT (2011) Molecular simulations of mutually exclusive folding in a two-domain protein switch. Biophys J 100(3):756–764
Article
CAS
Google Scholar
Tullman J, Guntas G, Dumont M, Ostermeier M (2011) Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnol Bioeng 108(11):2535–2543
Article
CAS
Google Scholar
Chiappori F, Merelli I, Colombo G, Milanesi L, Morra G (2012) Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations. Plos Comput Biol 8(12):e1002844
Article
CAS
Google Scholar
Zuiderweg ERP, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A (2013) Allostery in the Hsp70 chaperone proteins. Top Curr Chem 328:99–153
Article
CAS
Google Scholar
Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508(7496):331–339
Article
CAS
Google Scholar
Sun JY, Liu MQ, Xu YL, Xu ZR, Pan L, Gao H (2005) Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expr Purif 42:122–130
Article
CAS
Google Scholar
Wang Q, Xia AT (2008) Importance of C-Terminal region for thermostability of GH11 xylanase from Streptomyces lividans. Appl Biochem Biotechnol 144(3):273–282
Article
CAS
Google Scholar
Vieira DS, Degreve L (2009) An insight into the thermostability of a pair of xylanases: the role of hydrogen bonds. Mol Phys 107(1):59–69
Article
CAS
Google Scholar
Fonseca-Maldonado R, Vieira DS, Alponti JS, Bonneil E, Thibault P, Ward RJ (2013) Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase. J Biol Chem 288(35):25522–25534
Article
CAS
Google Scholar
Ludwiczek ML, Heller M, Kantner T, McIntosh LP (2007) A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 373(2):337–354
Article
CAS
Google Scholar
Falkoski DL, Guimaraes VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST (2012) Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Appl Biochem Biotechnol 166(6):1586–1603
Article
CAS
Google Scholar
Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178(2):61–72
Article
CAS
Google Scholar
Evans CS, Dutton MV, Guillen F, Veness RG (1994) Enzymes and small molecular-mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13(2–3):235–240
Article
CAS
Google Scholar
Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP et al (2008) Surface sites for engineering allosteric control in proteins. Science 322(5900):438–442
Article
CAS
Google Scholar
Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280(1):1–9
Article
CAS
Google Scholar
Li YL, Huang YP, Swaminathan CP, Smith-Gill SJ, Mariuzza RA (2005) Magnitude of the hydrophobic effect at central versus peripheral sites in protein-protein interfaces. Structure 13(2):297–307
Article
CAS
Google Scholar
Halperin I, Wolfson H, Nussinov R (2004) Protein-protein interactions: coupling of structurally conserved residues and of hot spots across interfaces. implications for docking. Structure 12(6):1027–1038
Article
CAS
Google Scholar
Murakami MT, Arni RK, Vieira DS, Degreve L, Ruller R, Ward RJ (2005) Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett 579(28):6505–6510
Article
CAS
Google Scholar
Paes G, Tran V, Takahashi M, Boukari I, O’Donohue MJ (2007) New insights into the role of the thumb-like loop in GH-II xylanases. Protein Eng Des Sel 20(1):15–23
Article
CAS
Google Scholar
Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4 (7)
Ribeiro LF, Bressan F, Furtado GP, Meireles F, Ward RJ (2013) d-Xylose detection in Escherichia coli by a xylose binding protein-dependent response. J Biotechnol 168(4):440–445
Article
CAS
Google Scholar
Sohka T, Heins RA, Phelan RM, Greisler JM, Townsend CA, Ostermeier M (2009) An externally tunable bacterial band-pass filter. Proc Natl Acad Sci USA 106(25):10135–10140
Article
CAS
Google Scholar
Kanwar M, Clay Wright R, Date A, Tullman J, Ostermeier M (2013) Protein switch engineering by domain insertion. In: Keating AE (ed) Methods in enzymology: methods in protein design. Elsevier, Amsterdam, pp 369–388
Chapter
Google Scholar
Wood PJ, Erfle JD, Teather RM (1988) Use of complex-formation between congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol 160:59–74
Article
CAS
Google Scholar
Biely P, Mislovicova D, Toman R (1988) Remazol brilliant blue xylan—a soluble chromogenic substrate for xylanases. Methods Enzymol 160:536–541
Article
CAS
Google Scholar
Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem 144(1):142–146
Article
CAS
Google Scholar
Moreira PR, Almeida-Vara E, Sena-Martins G, Polonia I, Malcata FX, Duarte JC (2001) Decolourisation of remazol brilliant blue R via a novel Bjerkandera sp strain. J Biotechnol 89(2–3):107–111
Article
CAS
Google Scholar
Leone FA, Baranauskas JA, Furriel RPM, Borin IA (2005) SigrafW: an easy-to-use program for fitting enzyme kinetic data. Biochem Mol Biol Educ 33(6):399–403
Article
CAS
Google Scholar
Sooriyaarachchi S, Ubhayasekera W, Park C, Mowbray SL (2010) Conformational changes and ligand recognition of Escherichia coli
d-xylose binding protein revealed. J Mol Biol 402(4):657–668
Article
CAS
Google Scholar
Sali A, Potterton L, Yuan F, Vanvlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by modeler. Proteins Struct Func Genet 23(3):318–326
Article
CAS
Google Scholar
Laskowski RA, MacArthur MW, Thornton JM (1998) Validation of protein models derived from experiment. Curr Opin Struct Biol 8(5):631–639
Article
CAS
Google Scholar
Arfken G (1985) The method of steepest descents in mathematical methods for physicists, 3 edn, Orlando
Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interactions models for water in relation to protein hydration. In: Pullman B (Reidel D, The Netherlands) (ed) Intermolecular Forces, pp 331–334
Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33(Web server issue):W368–W371
Article
CAS
Google Scholar
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101
Article
Google Scholar
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472
Article
CAS
Google Scholar
Miyamo S, Kollman PA (2002) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962
Article
Google Scholar
Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1(3):173–185
Article
Google Scholar
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N. log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092
Article
CAS
Google Scholar
Hess B, Kutzner C, Van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced and scalable molecular simulation. J Chem Theory Comput 4(3):435–447
Article
CAS
Google Scholar
van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) The GROMOS96 manual and user guide. Biomolecular simulation. Biomos, Groningen
Google Scholar
Tong W, Li L, Weng Z (2004) Computational prediction of binding hotspots. In: Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, vol 1–7 26:2980–2983
Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein-protein interaction. J Med Chem 50(15):3457–3464
Article
CAS
Google Scholar
DeLano WL, Lam JW (2005) PyMOL: a communications tool for computational models. Abstr Papers Am Chem Soc 230:U1371–U1372
Google Scholar