Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8. doi:10.1038/nature11478.
Article
CAS
Google Scholar
Ledesma-Amaro R. Microbial oils: a customizable feedstock through metabolic engineering. Eur J Lipid Sci Technol. 2015;117(2):141–4. doi:10.1002/ejlt.201400181.
Article
CAS
Google Scholar
van Zyl WH, Bloom M, Viktor MJ. Engineering yeasts for raw starch conversion. Appl Microbiol Biotechnol. 2012;95(6):1377–88. doi:10.1007/s00253-012-4248-0.
Article
CAS
Google Scholar
Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol. 2006;10(2):141–6. doi:10.1016/j.cbpa.2006.02.035.
Article
CAS
Google Scholar
Toksoy Oner E, Oliver SG, Kirdar B. Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae. Appl Environ Microbiol. 2005;71(10):6443–5. doi:10.1128/AEM.71.10.6443-6445.2005.
Aydemir E, Demirci S, Doğan A, Aytekin AO, Sahin F. Genetic modifications of Saccharomyces cerevisiae for ethanol production from starch fermentation: a review. J Bioprocess Biotech. 2014;4(180). doi:10.4172/2155-9821.1000180.
Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, van Dijck PW, Wyss M. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol. 2014;40(3):187–206. doi:10.3109/1040841X.2013.770386.
Article
CAS
Google Scholar
Zinjarde SS. Food-related applications of Yarrowia lipolytica. Food Chem. 2014;152:1–10. doi:10.1016/j.foodchem.2013.11.117.
Article
CAS
Google Scholar
Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009;48(6):375–87. doi:10.1016/j.plipres.2009.08.005.
Article
CAS
Google Scholar
Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. 2014;5:3131. doi:10.1038/ncomms4131.
Article
Google Scholar
Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013;15:1–9. doi:10.1016/j.ymben.2012.08.007.
Article
CAS
Google Scholar
Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast. 2001;18(2):97–113. doi:10.1002/1097-0061(20010130)18:2<97:AID-YEA652>3.0.CO;2-U.
Article
CAS
Google Scholar
Madzak C. Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol. 2015. doi:10.1007/s00253-015-6624-z.
Google Scholar
Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. Genome evolution in yeasts. Nature. 2004;430(6995):35–44. doi:10.1038/nature02579.
Article
Google Scholar
Loira N, Dulermo T, Nicaud JM, Sherman DJ. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol. 2012;6:35. doi:10.1186/1752-0509-6-35.
Article
Google Scholar
Pan P, Hua Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One. 2012;7(12):e51535. doi:10.1371/journal.pone.0051535.
Article
CAS
Google Scholar
Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, et al. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One. 2011;6(11):e27966. doi:10.1371/journal.pone.0027966.
Article
CAS
Google Scholar
Pomraning KR, Wei S, Karagiosis SA, Kim YM, Dohnalkova AC, Arey BW, et al. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLoS One. 2015;10(4):e0123188. doi:10.1371/journal.pone.0123188.
Article
Google Scholar
Mansour S, Bailly J, Delettre J, Bonnarme P. A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica. Proteomics. 2009;9(20):4714–25. doi:10.1002/pmic.200900161.
Article
CAS
Google Scholar
Wasylenko TM, Ahn WS, Stephanopoulos G. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng. 2015. doi:10.1016/j.ymben.2015.02.007.
Google Scholar
Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol. 2008;74(24):7779–89. doi:10.1128/AEM.01412-08.
Article
CAS
Google Scholar
Dulermo T, Nicaud JM. Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng. 2011;13(5):482–91. doi:10.1016/j.ymben.2011.05.002.
Article
CAS
Google Scholar
Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM. Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol. 2012;93(4):1523–37. doi:10.1007/s00253-011-3506-x.
Article
CAS
Google Scholar
Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015. doi:10.1016/j.ymben.2015.02.005.
Google Scholar
Wei H, Wang W, Alahuhta M, Vander Wall T, Baker JO, Taylor LE 2nd, et al. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing. Biotechnol Biofuels. 2014;7(1):148. doi:10.1186/s13068-014-0148-0.
Article
Google Scholar
Celinska E, Bialas W, Borkowska M, Grajek W. Cloning, expression, and purification of insect (Sitophilus oryzae) alpha-amylase, able to digest granular starch Yarrowia lipolytica host. Appl Microbiol Biotechnol. 2015;99(6):2727–39. doi:10.1007/s00253-014-6314-2.
Article
CAS
Google Scholar
Park CS, Chang CC, Kim JY, Ogrydziak DM, Ryu DD. Expression, secretion, and processing of rice alpha-amylase in the yeast Yarrowia lipolytica. J Biol Chem. 1997;272(11):6876–81.
Article
CAS
Google Scholar
Kwon MJ, Jorgensen TR, Nitsche BM, Arentshorst M, Park J, Ram AF, et al. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger. BMC Genom. 2012;13:701. doi:10.1186/1471-2164-13-701.
Article
CAS
Google Scholar
Muller S, Sandal T, Kamp-Hansen P, Dalboge H. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast. 1998;14(14):1267–83. doi:10.1002/(SICI)1097-0061(1998100)14:14<1267:AID-YEA327>3.0.CO;2-2.
Article
CAS
Google Scholar
Gasmi N, Fudalej F, Kallel H, Nicaud JM. A molecular approach to optimize hIFN alpha2b expression and secretion in Yarrowia lipolytica. Appl Microbiol Biotechnol. 2011;89(1):109–19. doi:10.1007/s00253-010-2803-0.
Article
CAS
Google Scholar
Favaro L, Jooste T, Basaglia M, Rose SH, Saayman M, Gorgens JF, et al. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Appl Microbiol Biotechnol. 2012;95(4):957–68. doi:10.1007/s00253-012-4001-8.
Article
CAS
Google Scholar
Kotaka A, Sahara H, Hata Y, Abe Y, Kondo A, Kato-Murai M, et al. Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Biosci Biotechnol Biochem. 2008;72(5):1376–9. doi:10.1271/bbb.70825.
Article
CAS
Google Scholar
Kosugi A, Kondo A, Ueda M, Murata Y, Vaithanomsat P, Thanapase W, et al. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew Energy. 2009;34(5):1354–8. doi:10.1016/j.renene.2008.09.002.
Article
CAS
Google Scholar
Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol. 2014;189:36–45. doi:10.1016/j.jbiotec.2014.08.011.
Article
CAS
Google Scholar
Krause DR, Wood CJ, Maclean DJ. Glucoamylase (exo-1, 4-a-d-glucan glucanohydrolase, EC-3.2.1.3) is the major starch-degrading enzyme secreted by the phytopathogenic fungus Colletotrichum gloeosporioides. J Gen Microbiol. 1991;137:2463–8.
Article
CAS
Google Scholar
Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, et al. Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol. 2010;160(4):988–1003. doi:10.1007/s12010-009-8579-y.
Article
CAS
Google Scholar
Yamada R, Yamakawa S, Tanaka T, Ogino C, Fukuda H, Kondo A. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme Microb Technol. 2011;48(4–5):393–6. doi:10.1016/j.enzmictec.2011.01.002.
Article
CAS
Google Scholar
Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol. 2010;87(1):109–15. doi:10.1007/s00253-010-2487-5.
Article
CAS
Google Scholar
Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol. 2004;70(8):5037–40. doi:10.1128/AEM.70.8.5037-5040.2004.
Article
CAS
Google Scholar
Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans. 2002;30(Pt 6):1047–50. doi:10.1042/BST0301047.
Article
CAS
Google Scholar
Lazar Z, Dulermo T, Neuveglise C, Crutz-Le Coq AM, Nicaud JM. Hexokinase-A limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng. 2014;26C:89–99. doi:10.1016/j.ymben.2014.09.008.
Article
Google Scholar
Dulermo T, Treton B, Beopoulos A, Kabran Gnankon AP, Haddouche R, Nicaud JM. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochim Biophys Acta. 2013;1831(9):1486–95. doi:10.1016/j.bbalip.2013.07.001.
Article
CAS
Google Scholar
Thevenieau F, Beopoulos A, Desfougeres T, Sabirova J, Albertin K, Zinjarde S, et al. Uptake and assimilation of hydrophobic substrates by the oleaginous yeast Yarrowia lipolytica. In: Timmins KN, editor. Handbook of hydrocarbon and lipid microbiology, chapter 48. Berlin: Springer; 2010 (ISBN: 978-3-540-77584-3 2010).
Aguedo M, Wache Y, Mazoyer V, Sequeira-Le Grand A, Belin JM. Increased electron donor and electron acceptor characters enhance the adhesion between oil droplets and cells of Yarrowia lipolytica as evaluated by a new cytometric assay. J Agric Food Chem. 2003;51(10):3007–11. doi:10.1021/jf020901m.
Article
CAS
Google Scholar
Caspeta L, Nielsen J. Economic and environmental impacts of microbial biodiesel. Nat Biotechnol. 2013;31(9):789–93. doi:10.1038/nbt.2683.
Article
CAS
Google Scholar
Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol. 2009;100(1):261–8. doi:10.1016/j.biortech.2008.06.039.
Article
CAS
Google Scholar
Dulermo R, Gamboa-Melendez H, Ledesma-Amaro R, Thevenieau F, Nicaud JM. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica. Biochim Biophys Acta. 2015. doi:10.1016/j.bbalip.2015.04.004.
Google Scholar
Barth G, Gaillardin C. Yarrowia lipolytica. In: Wolf K, editor. Non conventional yeasts in biotechnology, vol. 1. Berlin: Springer; 1996. pp. 313–88.
Chapter
Google Scholar
Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol. 2000;66(8):3283–9.
Article
CAS
Google Scholar
Nicaud JM, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, et al. Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res. 2002;2(3):371–9.
CAS
Google Scholar
Bordes F, Fudalej F, Dossat V, Nicaud JM, Marty A. A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica. J Microbiol Methods. 2007;70(3):493–502. doi:10.1016/j.mimet.2007.06.008.
Article
CAS
Google Scholar
Le Dall MT, Nicaud JM, Gaillardin C. Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet. 1994;26(1):38–44.
Article
Google Scholar
Querol A, Barrio E, Huerta T, Ramon D. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol. 1992;58(9):2948–53.
CAS
Google Scholar
Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods. 2003;55(3):727–37.
Article
CAS
Google Scholar
Browse J, McCourt PJ, Somerville CR. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem. 1986;152(1):141–5.
Article
CAS
Google Scholar
Ledesma-Amaro R, Santos MA, Jimenez A, Revuelta JL. Tuning single-cell oil production in Ashbya gossypii by engineering the elongation and desaturation systems. Biotechnol Bioeng. 2014;111(9):1782–91. doi:10.1002/bit.25245.
Article
CAS
Google Scholar
Wu Y, Li R, Hildebrand DF. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog Lipid Res. 2012;51(4):340–9. doi:10.1016/j.plipres.2012.05.001.
Article
CAS
Google Scholar
Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, Ravikumar A. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Fact. 2012;11:71. doi:10.1186/1475-2859-11-71.
Article
CAS
Google Scholar
Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc. 2006;83(10):823–33. doi:10.1007/s11746-006-5033-y.
Article
CAS
Google Scholar