Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D. Common evolutionary origin of the central portion of the RiTL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol. 1988;11(6):731–44.
Article
CAS
Google Scholar
Helfer A, Pien S, Otten L. Functional diversity and mutational analysis of Agrobacterium 6B oncoproteins. Mol Genet Genom. 2002;267:577–86.
Article
CAS
Google Scholar
Garfinkel D, Simpson R, Ream L, White F, Gordon M, Nester E. Genetic analysis of crown-gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell. 1981;27(1–2):143–53.
Article
CAS
Google Scholar
Hooykaas PJJ, den Dulk-Ras H, Schilperoort RA. The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Mol Biol. 1988;11(6):791–4.
Article
CAS
Google Scholar
Bonnard G, Tinland B, Paulus F, Szegedi E, Otten L. Nucleotide sequence, evolutionary origin and biological role of a rearranged cytokinin gene isolated from a wide host range biotype III Agrobacterium strain. Mol Gen Genet. 1989;216(2–3):428–38.
Article
CAS
Google Scholar
Tinland B, Huss B, Paulusn F, Bonnard G, Otten L. Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet. 1989;219(1):217–24.
CAS
Google Scholar
Helfer A, Clément B, Michler P, Otten L. The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco. Plant Mol Biol. 2003;52(2):483–93.
Article
CAS
Google Scholar
Chen K, Otten L. Morphological analysis of the 6b oncogene-induced enation syndrome. Planta. 2016;243(1):131–48.
Article
CAS
Google Scholar
Grémillon L, Helfer A, Clément B, Otten L. New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter. Plant J. 2004;37(2):218–28.
Article
Google Scholar
Clément B, Pollmann S, Weiler E, Urbanczyk-Wochniak E, Otten L. The Agrobacterium vitis T-6b oncoprotein induces auxin-independent cell expansion in tobacco. Plant J. 2006;45(6):1017–27.
Article
Google Scholar
Takahashi S, Sato R, Takahashi M, Hashiba N, Ogawa A, Toyofuku K, Sawata T, Ohsawa Y, Ueda K, Wabiko H. Ectopic localization of auxin and cytokinin in tobacco seedlings by the plant-oncogenic AK-6b gene of Agrobacterium tumefaciens AKE10. Planta. 2013;238(4):753–70.
Article
CAS
Google Scholar
Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65:33–67.
Article
CAS
Google Scholar
Kuang A, Musgrave ME. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana. Protoplasma. 1996;194:81–90.
Article
CAS
Google Scholar
Tang LY, Nagata N, Matsushima R, Chen YL, Yoshioka Y, Sakamoto W. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division. Plant Cell Physiol. 2009;50(4):904–8.
Article
CAS
Google Scholar
Andriotis VM, Pike MJ, Kular B, Rawsthorne S, Smith AM. Starch turnover in developing oilseed embryos. New Phytol. 2010;187(3):791–804.
Article
CAS
Google Scholar
da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawsthorne S. Starch metabolism in developing embryos of oilseed rape. Planta. 1997;203(4):480–7.
Article
Google Scholar
Li-Beisson Y, et al. Acyl-lipid metabolism. Arabidopsis Book. 2010;8:e0133.
Article
Google Scholar
Cernac A, Andre C, Hoffmann-Benning S, Benning C. WRI1 is required for seed germination and seedling establishment. Plant Physiol. 2006;141(2):745–57.
Article
CAS
Google Scholar
Meï C, Michaud M, Cussac M, Albrieux C, Gros V, Maréchal E, Block MA, Jouhet J, Rébeillé F. Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Sci Rep. 2015;5:15207.
Article
Google Scholar
Pagnussat LA, Oyarburo N, Cimmino C, Pinedo ML, De La Canal L. On the role of a lipid-transfer protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth. Plant Signal Behav. 2015;10(12):e1105417.
Article
Google Scholar
Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40(5):325–438.
Article
CAS
Google Scholar
Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell. 2004;16(10):2705–18.
Article
CAS
Google Scholar
Penfield S, Li Y, Gilday AD, Graham S, Graham IA. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell. 2006;18(8):1887–99.
Article
CAS
Google Scholar
Western TL, Young DS, Dean GH, Tan WL, Samuels AL, Haughn GW. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol. 2004;134(1):296–306.
Article
CAS
Google Scholar
Shi L, Katavic V, Yu Y, Kunst L, Haughn G. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J. 2012;69(1):37–46.
Article
CAS
Google Scholar
Wang X, Wang X, Hu Q, Dai X, Tian H, Zheng K, Wang X, Mao T, Chen JG, Wang S. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. Plant J. 2015;83(2):300–11.
Article
CAS
Google Scholar
Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54(4):593–607.
Article
CAS
Google Scholar
Dyer JM, Stymne S, Green AG, Carlsson AS. High-value oil from plants. Plant J. 2008;54(4):640–55.
Article
CAS
Google Scholar
Weselake R. Storage lipids. In: Murphy DJ, editor. Plant Lipids. Oxford: Blackwell Publishing; 2005. p. 162–206.
Google Scholar
Hayden DM, Rolletschek H, Borisjuk L, Corwin J, Kliebenstein DJ, Grimberg A, Stymne S, Dehesh K. Cofactome analyses reveal enhanced flux of carbon into oil for potential biofuel production. Plant J. 2011;67(6):1018–28.
Article
CAS
Google Scholar
Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 2010;153(3):980–7.
Article
CAS
Google Scholar
Alonso AP, Val DL, Shachar-Hill Y. Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab Eng. 2011;13(1):96–107.
Article
CAS
Google Scholar
Fan J, et al. Genomic foundation of starch-to-lipid switch in Oleaginous Chlorella spp. Plant Physiol. 2015;169(4):2444–61.
CAS
Google Scholar
Liu ZL, Wei R, He W, Ruan Y, Liu C. Characterization of an extracellularly derived α-mannosidase from the liquid exudate of the sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary. Antonie Van Leeuwenhoek. 2015;108(1):107–15.
Article
CAS
Google Scholar
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1(2):641–6.
Article
CAS
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
Google Scholar
Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, Wang Y, Zhong D, Jansson C, Wang F, Schnürer A, Sun C. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature. 2015;523(7562):602–6.
Article
CAS
Google Scholar
Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant J. 2005;44(1):128–38.
Article
CAS
Google Scholar
Zhang MZ, Fang JH, Yan X, Liu J, Bao JS, Fransson G, Andersson R, Jansson C, Åman P, Sun C. Molecular insights into how a deficiency of amylose affects carbon allocation-carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant. BMC Plant Biol. 2012;12:230.
Article
Google Scholar
De Smet KA, Weston A, Brown IN, Young DB, Robertson BD. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology. 2000;146(1):199–208.
Article
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.
Article
CAS
Google Scholar
Garcés R, Mancha M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem. 1993;211(1):139–43.
Article
Google Scholar
Aslan S, Sun C, Leonova S, Dutta P, Dörmann P, Domergue F, Stymne S, Hofvander P. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana. Metab Eng. 2014;25:103–12.
Article
CAS
Google Scholar
Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol. 2013;31(8):734–40.
Article
CAS
Google Scholar
Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43(1):25–30.
Article
Google Scholar
Voiniciuc C, Dean GH, Griffiths JS, Kirchsteiger K, Hwang YT, Gillett A, Dow G, Western TL, Estelle M, Haughn GW. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage. Plant Cell. 2013;25(3):944–59.
Article
CAS
Google Scholar
Voiniciuc C, Schmidt MH, Berger A, Yang B, Ebert B, Scheller HV, North HM, Usadel B, Günl M. MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage. Plant Physiol. 2015;169(1):403–20.
Article
Google Scholar
Okita TW, Hwang YS, Hnilo J, Kim WT, Aryan AP, Larson R, Krishnan HB. Structure and expression of the rice glutelin multigene family. J Biol Chem. 1989;264(21):12573–81.
CAS
Google Scholar
Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA. 2005;102(48):17531–6.
Article
CAS
Google Scholar
Schwarte S, Wegner F, Havenstein K, Groth D, Steup M, Tiedemann R. Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana. Plant Mol Biol. 2015;87(4–5):489–519.
Article
CAS
Google Scholar
Streb S, Zeeman SC. Starch metabolism in Arabidopsis. Arabidopsis Book. 2012;10:e0160.
Article
Google Scholar
Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA. 2012;109(1):321–6.
Article
Google Scholar
Bieniawska Z, Paul Barratt D, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 2007;49(5):810–28.
Article
CAS
Google Scholar
Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA, Benning C, Ohlrogge JB. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS ONE. 2013;8(7):e68887.
Article
CAS
Google Scholar
Baud S, Mendoza MS, To A, Harscoët E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007;50(5):825–38.
Article
CAS
Google Scholar
Baud S, Wuillème S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J. 2009;60(6):933–47.
Article
CAS
Google Scholar
Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 2009;60(3):476–87.
Article
CAS
Google Scholar
Zhang M, Fan J, Taylor DC, Ohlrogge JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009;21(12):3885–901.
Article
CAS
Google Scholar
Abdullah HM, Akbari P, Paulose B, Schnell D, Qi W, Park Y, Pareek A, Dhankher OP. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnol Biofuels. 2016;9:136.
Article
Google Scholar
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, Koyama H, Sahoo L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. Biotechnol Biofuels. 2016;9:226.
Article
Google Scholar