Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16.
Article
Google Scholar
Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T. Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng. 1997;84:300–6.
Article
CAS
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.
Article
CAS
Google Scholar
Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol. 2013;12:186.
Article
Google Scholar
Tseng CW, Ko TP, Guo RT, Huang JW, Wang HC, Huang CH, Cheng YS, Wang AH, Liu JR. Substrate binding of a GH5 endoglucanase from the ruminal fungus Piromyces rhizinflata. Acta Crystallogr Sect F. 2011;67:1189–94.
Article
CAS
Google Scholar
Lo Leggio L, Larsen S. The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett. 2002;523:103–8.
Article
CAS
Google Scholar
Lee TM, Farrow MF, Arnold FH, Mayo SL. A structural study of Hypocrea jecorina Cel5A. Protein Sci. 2011;20:1935–40.
Article
CAS
Google Scholar
Liu G, Li Q, Shang N, Huang JW, Ko TP, Liu W, Zheng Y, Han X, Chen Y, Chen CC, Jin J, Guo RT. Functional and structural analyses of a 1,4-β-endoglucanase from Ganoderma lucidum. Enzyme Microb Technol. 2016;86:67–74.
Article
CAS
Google Scholar
Yan J, Liu W, Li Y, Lai HL, Zheng Y, Huang JW, Chen CC, Chen Y, Jin J, Li H, Zhong LH, Guo RT. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochem Biophys Res Commun. 2016;475:8–12.
Article
CAS
Google Scholar
Wierenga R. The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 2001;492:193–8.
Article
CAS
Google Scholar
Tu T, Pan X, Meng K, Luo H, Ma R, Wang Y, Yao B. Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo-polygalacturonases. Process Biochem. 2016;51:1230–8.
Article
CAS
Google Scholar
Zou J, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, Jones TA. Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure. 1999;7:1035–45.
Article
CAS
Google Scholar
Varrot A, Schülein M, Davies GJ. Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding. Biochemistry. 1999;38:8884–91.
Article
CAS
Google Scholar
Meinke A, Damude HG, Tomme P, Kwan E, Kilburn DG, Miller RCJ, Warren RA, Gilkes NR. Enhancement of the endo-β-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. J Biol Chem. 1995;270:4383–6.
Article
CAS
Google Scholar
Cheng YS, Ko TP, Huang JW, Wu TH, Lin CY, Luo W, Li Q, Ma Y, Huang CH, Wang AH, Liu JR, Guo RT. Enhanced activity of Thermotoga maritima cellulase 12A by mutating a unique surface loop. Appl Microbiol Biotechnol. 2012;95:661–9.
Article
CAS
Google Scholar
Badieyan S, Bevan DR, Zhang C. A salt-bridge controlled by ligand binding modulates the hydrolysis reaction in a GH5 endoglucanase. Protein Eng Des Sel. 2012;25:223–33.
Article
CAS
Google Scholar
Yuan SF, Wu TH, Lee HL, Hsieh HY, Lin WL, Yang B, Chang CK, Li Q, Gao J, Huang CH. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J Biol Chem. 2015;290:5739–48.
Article
CAS
Google Scholar
Bommarius AS, Broering JM, Chaparro-Riggers JF, Polizzi KM. High-throughput screening for enhanced protein stability. Curr Opin Biotechnol. 2006;17:606–10.
Article
CAS
Google Scholar
Liang C, Fioroni M, Rodríguez-Ropero F, Xue Y, Schwaneberg U, Ma Y. Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol. 2011;154:46–53.
Article
CAS
Google Scholar
Wang K, Luo H, Bai Y, Shi P, Huang H, Xue X, Yao B. A thermophilic endo-1,4-β-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials. Appl Microbiol Biotechnol. 2014;98:7051–60.
Article
CAS
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.
Article
CAS
Google Scholar
Pearson WR. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith–Waterman and FASTA algorithms. Genomics. 1991;11:635–50.
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem (Wash). 1959;31:426–8.
Article
CAS
Google Scholar
Lindorff-larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8.
CAS
Google Scholar
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–25.
Article
CAS
Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.
Article
CAS
Google Scholar
Case DA, Darden TA, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvai I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. AMBER 11. San Francisco: University of California; 2010.
Google Scholar
Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem. 2008;29:622–55.
Article
CAS
Google Scholar
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TR. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2001;32:889–97.
Google Scholar
Steiner T. The hydrogen bond in the solid state. Angew Chem Int Ed. 2002;41:48–76.
Article
CAS
Google Scholar
Zhai X, Amyes TL, Richard JP. The role of loop-clamping side chains in catalysis by triosephosphate isomerase. J Am Chem Soc. 2015;137:15185–97.
Article
CAS
Google Scholar
Zhai X, Go MK, O’Donoghue AC, Amyes TL, Pegan SD, Wang Y, Loria JP, Mesecar AD, Richard JP. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase. Biochemistry. 2014;53:3486–501.
Article
CAS
Google Scholar
Voutilainen SP, Murray PG, Tuohy MG, Koivula A. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Sel. 2010;23:69–79.
Article
CAS
Google Scholar
Chang YY, Hsu CH. Multiple conformations of the loop region confers heat-resistance of SsArd1, a thermophilic NatA. ChemBioChem. 2015;17:214–7.
Article
Google Scholar
Nagao Y, Kitada S, Kojima K, Toh H, Kuhara S, Ogishima T, Ito A. Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem. 2000;275:34552–6.
Article
CAS
Google Scholar
Okoniewska M, Tanaka T, Yada RY. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis. Biochem J. 2000;349:169.
Article
CAS
Google Scholar
Kim D, Bo HP, Jung BW, Kim M, Hong SI, Lee DS. Identification and molecular modeling of a family 5 endocellulase from Thermus caldophilus GK24, a cellulolytic strain of Thermus thermophilus. Int J Mol Sci. 2006;7:571–89.
Article
CAS
Google Scholar
Verdoucq L, Morinière J, Bevan DR, Esen A, Vasella A, Henrissat B, Czjze M. Structural determinants of substrate specificity in family 1 β-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant β-glucosidase with strict specificity, in complex with its natural substrate. J Biol Chem. 2004;279:31796–803.
Article
CAS
Google Scholar
Li J, Du L, Wang L. Glycosidic-bond hydrolysis mechanism catalyzed by cellulase Cel7A from Trichoderma reesei: a comprehensive theoretical study by performing MD, QM and QM/MM calculations. J Phys Chem B. 2010;114:15261–8.
Article
CAS
Google Scholar
Wang X, Huang H, Xie X, Ma R, Bai Y, Zheng F, You S, Zhang B, Xie H, Yao B. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. Bioresour Technol. 2016;222:277–84.
Article
CAS
Google Scholar