IEA. World energy outlook 2016. Paris: IEA; 2016.
Google Scholar
IPCC. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014.
Google Scholar
Weyer KM, Bush DR, Darzins A, Willson BD. Theoretical maximum algal oil production. BioEnergy Res. 2010;3:204–13.
Article
CAS
Google Scholar
Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009;177:272–80.
Article
CAS
Google Scholar
Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008;26:126–31.
Article
CAS
Google Scholar
Shurin JB, Burkart MD, Mayfield SP, Smith VH. Recent progress and future challenges in algal biofuel production. F1000 Res. 2016. https://doi.org/10.12688/f1000research.9217.1.
Google Scholar
Goold H, Beisson F, Peltier G, Li-Beisson Y. Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep. 2015;34:545–55.
Article
CAS
Google Scholar
Challagulla V, Nayar S, Walsh K, Fabbro L. Advances in techniques for assessment of microalgal lipids. Crit Rev Biotechnol. 2017;37:566–78.
Article
CAS
Google Scholar
Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret JP, Bougaran G. The use of fluorescent Nile Red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels. 2015;8:42.
Article
Google Scholar
Brown WJ, Sullivan TR, Greenspan P. Nile Red staining of lysosomal phospholipid inclusions. Histochemistry. 1992;97:349–54.
Article
CAS
Google Scholar
Cirulis JT, Strasser BC, Scott JA, Ross GM. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A. 2012;81:618–26.
Article
Google Scholar
Ghoneim N. Photophysics of Nile Red in solution: steady state spectroscopy. Spectrochim Acta A. 2000;56:1003–10.
Article
CAS
Google Scholar
Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe, Nile Red. J Lipid Res. 1985;26:781–9.
CAS
Google Scholar
O’Rourke EJ, Soukas AA, Carr CE, Ruvkun G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 2009;10:430–5.
Article
Google Scholar
Chen W, Sommerfeld M, Hu Q. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol. 2011;102:135–41.
Article
CAS
Google Scholar
Prioretti L, Avilan L, Carrière F, Montané M-H, Field B, Grégori G, Menand B, Gontero B. The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime. Algal Res. 2017;26:265–74.
Article
Google Scholar
Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods. 2009;77:41–7.
Article
CAS
Google Scholar
Doan T-TY, Obbard JP. Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol. 2011;23:895–901.
Article
CAS
Google Scholar
Mendoza Guzmán H, de la Jara Valido A, Carmona Duarte L, Freijanes Presmanes K. Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J Appl Phycol. 2011;23:7–15.
Article
Google Scholar
Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol. 2011;102:57–70.
Article
CAS
Google Scholar
Pick U, Rachutin-Zalogin T. Kinetic anomalies in the interactions of Nile Red with microalgae. J Microbiol Methods. 2012;88:189–96.
Article
CAS
Google Scholar
Sitepu IR, Ignatia L, Franz AK, Wong DM, Faulina SA, Tsui M, Kanti A, Boundy-Mills K. An improved high-throughput Nile Red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods. 2012;91:321–8.
Article
CAS
Google Scholar
Cooper MS, Hardin WR, Petersen TW, Cattolico RA. Visualizing “green oil” in live algal cells. J Biosci Bioeng. 2010;109:198–201.
Article
CAS
Google Scholar
De la Hoz Siegler H, Ayidzoe W, Ben-Zvi A, Burrell RE, McCaffrey WC. Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures. Algal Res. 2012;1:176–84.
Article
Google Scholar
Spandl J, White DJ, Peychl J, Thiele C. Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic. 2009;10:1579–84.
Article
CAS
Google Scholar
Park J, Na S, Lee Y, Lee S, Park S, Jeon N. Measurement of lipid droplet accumulation kinetics in Chlamydomonas reinhardtii using seoul-fluor. Energies. 2013;6:5703.
Article
Google Scholar
Yang H-J, Hsu C-L, Yang J-Y, Yang WY. Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging. PLoS ONE. 2012;7:e32693.
Article
CAS
Google Scholar
Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol. 2016;170:2052–71.
Article
CAS
Google Scholar
Kuntam S, Puskas LG, Ayaydin F. Characterization of a new class of blue-fluorescent lipid droplet markers for live-cell imaging in plants. Plant Cell Rep. 2015;34:655–65.
Article
CAS
Google Scholar
Puskas LG, Feher LZ, Vizler C, Ayaydin F, Raso E, Molnar E, Magyary I, Kanizsai I, Gyuris M, Madacsi R, et al. Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells. Lipids Health Dis. 2010;9:56.
Article
Google Scholar
Harris E. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989.
Google Scholar
Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K. R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci USA. 2009;106:12548–53.
Article
CAS
Google Scholar
Imamura S, Kawase Y, Kobayashi I, Shimojima M, Ohta H, Tanaka K. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Plant Signal Behav. 2016;11:e1149285.
Article
Google Scholar
Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals: proceedings—1st conference on culture of marine invertebrate animals greenport. Boston: Springer; 1975. p. 29–60.
Chapter
Google Scholar
Alipanah L, Rohloff J, Winge P, Bones AM, Brembu T. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Exp Bot. 2015;66:6281–96.
Article
CAS
Google Scholar
Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21:493–507.
Article
CAS
Google Scholar
Bromke MA, Sabir JS, Alfassi FA, Hajarah NH, Kabli SA, Al-Malki AL, Ashworth MP, Meret M, Jansen RK, Willmitzer L. Metabolomic profiling of 13 diatom cultures and their adaptation to nitrate-limited growth conditions. PLoS ONE. 2015;10:e0138965.
Article
Google Scholar
Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, Shimojima M, Ohta H, Tanaka K. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol. 2015;89:309–18.
Article
CAS
Google Scholar
Mukaida S, Ogawa T, Ohishi K, Tanizawa Y, Ohta D, Arita M. The effect of rapamycin on biodiesel-producing protist Euglena gracilis. Biosci Biotechnol Biochem. 2016;80:1223–9.
Article
CAS
Google Scholar
Pérez-Pérez M, Couso I, Crespo J. The TOR signaling network in the model unicellular green alga Chlamydomonas reinhardtii. Biomolecules. 2017;7:54.
Article
Google Scholar
Miquel M, Trigui G, d’Andrea S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol. 2014;164:1866–78.
Article
CAS
Google Scholar
Hayashi Y, Shinozaki A. Visualization of microbodies in Chlamydomonas reinhardtii. J Plant Res. 2012;125:579–86.
Article
CAS
Google Scholar