Wang EQ, Li SZ, Tao L, Geng X, Li TC. Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energy. 2010;87:2839–45.
Article
CAS
Google Scholar
Li SZ, Li GM, Zhang L, Zhou ZX, Han B, Hou WH, et al. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energy. 2013;102:260–5.
Article
CAS
Google Scholar
Li J, Li S, Han B, Yu M, Li G, Jiang Y. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. Biotechnol Biofuels. 2013;6:174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du R, Yan JB, Feng QZ, Li PP, Zhang L, Chang S, et al. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks. PLoS ONE. 2014;9:e94480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey A. Solid-state fermentation. Biochem Eng J. 2003;13:81–4.
Article
CAS
Google Scholar
Wang EQ, Han B, Li SZ. Numerical simulation of transient radial temperature distribution in rotating drum bioreactor for solid state fermentation. In: International conference on materials for renewable energy and environment (ICMREE). China: Chengdu. 2013; p. 291–4. https://doi.org/10.1109/icmree.2013.6893668
Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol. 2010;85:861–7.
Article
CAS
PubMed
Google Scholar
Li P, Fu X, Zhang L, Zhang Z, Li J, Li S. The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol Biofuels. 2017;10:289.
Article
PubMed
PubMed Central
Google Scholar
Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol. 2008;74:7514–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang HW, Kim Y, Kim SW, Choi GW. Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess Biosyst Eng. 2012;35:115–22.
Article
CAS
PubMed
Google Scholar
Rosa MF, Sá-Correia I. Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol. 1992;14:23–7.
Article
CAS
Google Scholar
Ma M, Liu ZL. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;87:829–45.
Article
CAS
PubMed
Google Scholar
Santos CN, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol. 2008;12:168–76.
Article
CAS
PubMed
Google Scholar
Woodruff LB, Gill RT. Engineering genomes in multiplex. Curr Opin Biotechnol. 2011;22:576–83.
Article
CAS
PubMed
Google Scholar
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565–8.
Article
CAS
PubMed
Google Scholar
Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258–67.
Article
CAS
PubMed
Google Scholar
Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, et al. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng. 2011;108:1776–87.
Article
CAS
PubMed
Google Scholar
Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv. 2013;31:986–91.
Article
CAS
PubMed
Google Scholar
Zhao HW, Li JY, Han BZ, Li X, Chen JY. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering. J Ind Microbiol Biotechnol. 2014;41:869–78.
Article
CAS
PubMed
Google Scholar
Si HM, Zhang F, Wu AN, Han RZ, Xu GC, Ni Y. DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnol Biofuels. 2016;9:114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan F, Wu B, Dai L, Qin H, Shui Z, Wang J, et al. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb Cell Fact. 2016;15:4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol Biofuels. 2017;10:125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam FH, Hartner FS, Fink GR, Stephanopoulos G. Enhancing stress resistance and production phenotypes through transcriptome engineering. Methods Enzymol. 2010;470:509–32.
Article
CAS
PubMed
Google Scholar
Liu H, Yan M, Lai C, Xu L, Ouyang P. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2010;160:574–82.
Article
CAS
PubMed
Google Scholar
Liu H, Liu K, Yan M, Xu L, Ouyang P. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol. 2011;164:1150–9.
Article
CAS
PubMed
Google Scholar
Lee J, Koo H, Park J, Kim J, Kim J, Park J, et al. Acid-resistance in Kluyveromyces marxianus by engineering transcriptional factor. US Patent US009605284B2, 2017
Kim J, Iyer VR. Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles. Mol Cell Biol. 2004;24:8104–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huisinga KL, Pugh BF. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell. 2004;13:573–85.
Article
CAS
PubMed
Google Scholar
Sharma P, Yan F, Doronina VA, Escuin-Ordinas H, Ryan MD, Brown JD. 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucleic Acids Res. 2012;40:3143–51.
Article
CAS
PubMed
Google Scholar
You L, Arnold FH. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 1996;9:77–83.
Article
CAS
PubMed
Google Scholar
Wan L, Twitchett MB, Eltis LD, Mauk AG, Smith M. In vitro evolution of horse heart myoglobin to increase peroxidase activity. Proc Natl Acad Sci USA. 1998;95:12825–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, et al. Directed evolution of a fungal peroxidase. Nat Biotechnol. 1999;17:379–84.
Article
CAS
PubMed
Google Scholar
Karim AS, Curran KA, Alper HS. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res. 2013;13:107–16.
Article
CAS
PubMed
Google Scholar
Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol. 2006;41:105–78.
Article
CAS
PubMed
Google Scholar
Burley SK, Roeder RG. Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem. 1996;65:769–99.
Article
CAS
PubMed
Google Scholar
Zhou QA, Schmidt MC, Berk AJ. Requirement for acidic amino acid residues immediately N-terminal to the conserved domain of Saccharomyces cerevisiae TFIID. EMBO J. 1991;10:1843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittal V, Hernandez N. Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science. 1997;275:1136–40.
Article
CAS
PubMed
Google Scholar
Zhao X, Herr W. A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Cell. 2002;108:615–27.
Article
CAS
PubMed
Google Scholar
Zhang GR, Lu M, Wang JC, Wang DM, Gao XL, Hong J. Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction. Sci Rep. 2017;7:45104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishino S, Okahashi N, Matsuda F, Shimizu H. Absolute quantitation of glycolytic intermediates reveals thermodynamic shifts in Saccharomyces cerevisiae strains lacking PFK1 or ZWF1 genes. J Biosci Bioeng. 2015;120:280–6.
Article
CAS
PubMed
Google Scholar
Pearce AK, Crimmins K, Groussac E, Hewlins MJE, Dickinson JR, Francois J, et al. Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology. 2001;147:391–401.
Article
CAS
PubMed
Google Scholar
Nielsen J, Larsson C, van Maris A, Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013;24:398–404.
Article
CAS
PubMed
Google Scholar
Vriesekoop F, Haass C, Pamment NB. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts. FEMS Yeast Res. 2009;9:365–71.
Article
CAS
PubMed
Google Scholar
Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, et al. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels. 2015;8:115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suissa M, Suda K, Schatz G. Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method. EMBO J. 1984;3:1773–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vargas FA, Pizarro F, Perez-Correa JR, Agosin E. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst Biol. 2011;5:75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues F, Ludovico P, Leão C. Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism. In: Péter G, Rosa C, editors. Biodiversity and ecophysiology of yeasts. Berlin: Springer; 2006. p. 101–21.
Chapter
Google Scholar
Blank LM, Lehmbeck F, Sauer U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 2005;5:545–58.
Article
CAS
PubMed
Google Scholar
Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, et al. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels. 2015;8:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lertwattanasakul N, Sootsuwan K, Limtong S, Thanonkeo P, Yamada M. Comparison of the gene expression patterns of alcohol dehydrogenase isozymes in the thermotolerant yeast Kluyveromyces marxianus and their physiological functions. Biosci Biotechnol Biochem. 2007;71:1170–82.
Article
CAS
PubMed
Google Scholar
Lobs AK, Engel R, Schwartz C, Flores A, Wheeldon I. CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol Biofuels. 2017;10:164.
Article
PubMed
PubMed Central
Google Scholar
Casey GP, Ingledew WMM. Ethanol tolerance in yeasts. Crit Rev Microbiol. 1986;13:219–80.
Article
CAS
PubMed
Google Scholar
Henderson CM, Block DE. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80:2966–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones RP, Greenfield PF. Ethanol and the fluidity of the yeast plasma membrane. Yeast. 1987;3:223–32.
Article
CAS
PubMed
Google Scholar
Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2009;85:253–63.
Article
CAS
PubMed
Google Scholar
Hu CK, Bai FW, An LJ. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Chin J Biotechnol. 2005;21:809–13.
CAS
Google Scholar
Takagi H, Takaoka M, Kawaguchi A, Kubo Y. Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol. 2005;71:8656–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi Z, Arneborg N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol. 1999;86:1047–52.
Article
CAS
PubMed
Google Scholar
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochem Biophys Acta. 2007;1773:1311–40.
Article
CAS
PubMed
Google Scholar
Saito H. Regulation of cross-talk in yeast MAPK signaling pathways. Curr Opin Microbiol. 2010;13:677–83.
Article
CAS
PubMed
Google Scholar
de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455:1251–4.
Article
CAS
PubMed
Google Scholar
Li BZ, Cheng JS, Ding MZ, Yuan YJ. Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol. 2010;148:194–203.
Article
CAS
PubMed
Google Scholar
Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek. 2011;100:507–19.
Article
CAS
PubMed
Google Scholar
Yarimizu T, Nonklang S, Nakamura J, Tokuda S, Nakagawa T, Lorreungsil S, et al. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae. Yeast. 2013;30:485–500.
Article
CAS
PubMed
Google Scholar
Bernstein H, Bernstein C. Evolutionary origin and adaptive function of meiosis. In: Bernstein C, Bernstein H, editors. Meiosis. London: InTech; 2013.
Chapter
Google Scholar
Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 2001;498:98–103.
Article
CAS
PubMed
Google Scholar
Chandler M, Stanley GA, Rogers P, Chambers P. A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol. 2004;54:427–54.
CAS
Google Scholar
Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol. 2010;109:13–24.
CAS
PubMed
Google Scholar
Szymczak-Workman AL, Vignali KM, Vignali DA. Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb Protoc. 2012;2012:199–204.
PubMed
Google Scholar
Lee SJ, Ramesh R, de Boor V, Gebler JM, Silva RC, Sattlegger E. Cost-effective and rapid lysis of Saccharomyces cerevisiae cells for quantitative western blot analysis of proteins, including phosphorylated eIF2α. Yeast. 2017;34:371–82.
Article
CAS
PubMed
Google Scholar
Tsoularis A, Wallace J. Analysis of logistic growth models. Math Biosci. 2002;179:21–55.
Article
CAS
PubMed
Google Scholar
Fu X, Li P, Zhang L, Li S. RNA-Seq-based transcriptomic analysis of Saccharomyces cerevisiae during solid-state fermentation of crushed sweet sorghum stalks. Process Biochem. 2018;68:53–63.
Article
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.
Article
CAS
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.
Article
CAS
PubMed
Google Scholar