Centi G, Quadrelli EA, Perathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci. 2013;6(6):1711–31.
Article
CAS
Google Scholar
Schietekat CM, Van Cauwenberge DJ, Van Geem KM, Marin GB. Computational fluid dynamics-based design of finned steam cracking reactors. AIChE J. 2014;60(2):794–808.
Article
CAS
Google Scholar
Lynch S, Eckert C, Yu J, Gill R, Maness PC. Overcoming substrate limitations for improved production of ethylene in E. coli. Biotechnol Biofuels. 2016;9:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo M, Song W, Buhain J. Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev. 2015;42:712–25.
Article
CAS
Google Scholar
Gerbrandt K, Chu PL, Simmonds A, Mullins KA, MacLean HL, Griffin WM, et al. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol. 2016;38:63–70.
Article
PubMed
CAS
Google Scholar
De Paepe A, Van der Straeten D. Ethylene biosynthesis and signaling: an overview. Vitam Horm. 2005;72:399–430.
Article
PubMed
CAS
Google Scholar
Fukuda H, Ogawa T, Tanase S. Ethylene production by micro-organisms. Adv Microb Physiol. 1993;35:275–306.
Article
PubMed
CAS
Google Scholar
Kumar R, Saha S, Dhaka S, Kurade MB, Kang CU, Baek SH, et al. Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives. Geosys Eng. 2016;20(1):28–40.
Article
CAS
Google Scholar
Shipston N, Bunch AW. The physiology of l-methionine catabolism to the secondary metabolite ethylene by Escherichia coli. J Gen Microbiol. 1989;135(6):1489–97.
PubMed
CAS
Google Scholar
Fukuda H, Ogawa T, Ishihara K, Fujii T, Nagahama K, Omata T, et al. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae PV. phaseolicola PK2. Biochem Biophys Res Commun. 1992;188(2):826–32.
Article
PubMed
CAS
Google Scholar
Martinez S, Hausinger RP. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry. 2016;55(43):5989–99.
Article
PubMed
CAS
Google Scholar
Zhang Z, Smart TJ, Choi H, Hardy F, Lohans CT, Abboud MI, et al. Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proc Natl Acad Sci. 2017;114(18):4667–72.
Article
PubMed
CAS
PubMed Central
Google Scholar
Martinez S, Fellner M, Herr CQ, Ritchie A, Hu J, Hausinger RP. Structures and mechanisms of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme: substrate binding creates a twist. J Am Chem Soc. 2017;139(34):11980–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, et al. Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels. 2014;7(1):33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR. Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS ONE. 2012;7(11):e50470.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye L, Lv X, Yu H. Engineering microbes for isoprene production. Metab Eng. 2016;38:125–38.
Article
PubMed
CAS
Google Scholar
Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes DXS, DXR, and IDI in Escherichia coli. Appl Microbiol Biotechnol. 2013;97(6):2357–65.
Article
PubMed
CAS
Google Scholar
Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–30.
Article
PubMed
CAS
Google Scholar
Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng. 2009;11(1):13–9.
Article
PubMed
CAS
Google Scholar
Chaves JE, Kirst H, Melis A. Isoprene production in Synechocystis under alkaline and saline growth conditions. J Appl Phycol. 2014;27(3):1089–97.
Article
CAS
Google Scholar
Meskhidze N, Sabolis A, Reed R, Kamykowski D. Quantifying environmental stress-induced emissions of algal isoprene and monoterpenes using laboratory measurements. Biogeosciences. 2015;12(3):637–51.
Article
CAS
Google Scholar
Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenergy Res. 2012;5(4):814–28.
Article
CAS
Google Scholar
van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ. Fermentative production of isobutene. Appl Microbiol Biotechnol. 2012;93(4):1377–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86–9.
Article
PubMed
CAS
Google Scholar
Marliere P. Method for producing an alkene comprising step of converting an alcohol by an enzymatic dehydration step. 2011.
Fukuda H, Fujii T, Ogawa T. Microbial production of C3- and C4-hydrocarbons under aerobic conditions. Agric Biol Chem. 1984;48:1679–82.
CAS
Google Scholar
Fujii T, Ogawa T, Fukuda H. Isobutene production by Rhodotorula minuta. Appl Microbiol Biotechnol. 1987;25:430–3.
Article
CAS
Google Scholar
Marliere P. Method for the enzymatic production of 3-hydroxy-3-methylbutyric acid from acetone and acetyl-CoA. 2011.
Rossoni L, Hall SJ, Eastham G, Licence P, Stephens G. The putative mevalonate diphosphate decarboxylase from Picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol. 2015;81(7):2625–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci. 2012;5(10):8998.
Article
CAS
Google Scholar
Xiong W, Morgan JA, Ungerer J, Wang B, Maness P-C, Yu J. The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nature Plants. 2015;1(5):15053.
Article
CAS
Google Scholar
Zhu T, Xie X, Li Z, Tan X, Lu X. Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803. Green Chem. 2015;17(1):421–34.
Article
CAS
Google Scholar
Chen X, Liang Y, Hua J, Tao L, Qin W, Chen S. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene. Int J Biol Sci. 2010;6(1):96–106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fukuda H, Ogawa T, Tazaki M, Nagahama K, Fujii T, Tanase S, et al. Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun. 1992;188(2):483–9.
Article
PubMed
CAS
Google Scholar
Gerich M. Ethylene production from E. coli, in Chemical Engineering. Texas A&M University, Texas. 2012. p. 24.
Johansson N, Persson KO, Larsson C, Norbeck J. Comparative sequence analysis and mutagenesis of ethylene forming enzyme (EFE) 2-oxoglutarate/Fe(II)-dependent dioxygenase homologs. BMC Biochem. 2014;15(22):1–8.
Google Scholar
North JA, Miller AR, Wildenthal JA, Young SJ, Tabita FR. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation. Proc Natl Acad Sci. 2017;114(48):E10455–64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rebelein JG, Lee CC, Hu Y, Ribbe MW. The in vivo hydrocarbon formation by vanadium nitrogenase follows a secondary metabolic pathway. Nat Commun. 2016;7:13641.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pirkov I, Albers E, Norbeck J, Larsson C. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab Eng. 2008;10(5):276–80.
Article
PubMed
CAS
Google Scholar
Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488(7411):320–8.
Article
PubMed
CAS
Google Scholar
Wang JP, Wu LX, Xu F, Lv J, Jin HJ, Chen SF. Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene (efe) at the 16S rDNA sites of Pseudomonas putida KT2440. Bioresour Technol. 2010;101(16):6404–9.
Article
PubMed
CAS
Google Scholar
Mo H, Xie X, Zhu T, Lu X. Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2017;10:145.
Article
PubMed
PubMed Central
Google Scholar
Li N, Jiang XN, Cai GP, Yang SF. A novel bifunctional fusion enzyme catalyzing ethylene synthesis via 1-aminocyclopropane1-carboxylic acid. J Biol Chem. 1996;271(42):25738–41.
Article
PubMed
CAS
Google Scholar
Kuzman J, Nemecek-Marchall M, Pollock WH, Fall R. Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol. 1995;30:97–103.
Article
Google Scholar
Loreto F, Fineschi S. Reconciling functions and evolution of isoprene emission in higher plants. New Phytol. 2015;206(2):578–82.
Article
PubMed
CAS
Google Scholar
Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P, Geron C. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys. 2006;6:107–73.
Article
Google Scholar
Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: why and how. Ann Bot. 2008;101(1):5–18.
Article
PubMed
CAS
Google Scholar
Miller B, Oschinski C, Zimmer W. First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta. 2001;213(3):483–7.
Article
PubMed
CAS
Google Scholar
Sasaki K, Ohara K, Yazaki K. Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett. 2005;579(11):2514–8.
Article
PubMed
CAS
Google Scholar
Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE. Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol. 2005;137(2):700–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schnitzler JP, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ. Biochemical properties of isoprene synthase in poplar (Populus canescens). Planta. 2005;222(5):777–86.
Article
PubMed
CAS
Google Scholar
Wildermuth MC, Fall R. Light-dependent isoprene emission (characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol. 1996;112(1):171–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pade N, Erdmann S, Enke H, Dethloff F, Duhring U, Georg J, et al. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2016;9:89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM. Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant Cell Environ. 2011;34(6):1043–53.
Article
PubMed
CAS
Google Scholar
Bott RR, Cervin MA, Kellis JT Jr, McAuliffe JC, Miasnikov A, Peres CM et al. Isoprene synthase variants for improved microbial production of isoprene. Google Patents, 2014.
Wang F, Lv X, Xie W, Zhou P, Zhu Y, Yao Z, et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab Eng. 2017;39:257–66.
Article
PubMed
CAS
Google Scholar
Gao X, Gao F, Liu D, Zhang H, Nie XQ, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci. 2016;9(4):1400–11.
Article
CAS
Google Scholar
Ilmen M, Oja M, Huuskonen A, Lee S, Ruohonen L, Jung S. Identification of novel isoprene synthases through genome mining and expression in Escherichia coli. Metab Eng. 2015;31:153–62.
Article
PubMed
CAS
Google Scholar
Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, et al. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol. 2011;90(6):1915–22.
Article
PubMed
CAS
Google Scholar
Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science. 2010;330(6000):70–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao L, Chang WC, Xiao Y, Liu HW, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem. 2013;82:497–530.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murphy NRB, Weber KA, Aldridge JT, Carr SR. Production of isoprene by methane-producing archaea. Google Patents. 2017.
Gogerty DS, Bobik TA. Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol. 2010;76(24):8004–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Senger RS, Papoutsakis ET. Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng. 2008;101(5):1036–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buermans HP, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta. 2014;1842(10):1932–41.
Article
PubMed
CAS
Google Scholar
Zheng Y, Yuan Q, Yang X, Ma H. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme Microb Technol. 2017;106:60–6.
Article
PubMed
CAS
Google Scholar
Yang Y, Hu XP, Ma BG. Construction and simulation of the Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison between free-living and symbiotic states. Mol BioSyst. 2017;13(3):607–20.
Article
PubMed
CAS
Google Scholar
Frainay C, Jourdan F. Computational methods to identify metabolic sub-networks based on metabolomic profiles. Brief Bioinform. 2017;18(1):43–56.
Article
PubMed
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol. 2014;10(2):e1003487.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013;41(Database issue):D605–12.
Article
PubMed
CAS
Google Scholar
Rezola A, Pey J, Tobalina L, Rubio A, Beasley JE, Planes FJ. Advances in network-based metabolic pathway analysis and gene expression data integration. Brief Bioinform. 2015;16(2):265–79.
Article
PubMed
CAS
Google Scholar
Wagner C, Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys J. 2005;89(6):3837–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Granata T. Dependency of microalgal production on biomass and the relationship to yield and bioreactor scale-up for biofuels: a statistical analysis of 60+ years of algal bioreactor data. Bioenergy Res. 2016;10(1):267–87.
Article
CAS
Google Scholar
Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, et al. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng. 2015;28:82–90.
Article
PubMed
CAS
Google Scholar
Murphy JD, Browne J, Allen E, Gallagher C. The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel. Renew Energy. 2013;55:474–9.
Article
Google Scholar
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol. 2016;9(6):699–717.
Article
PubMed
PubMed Central
CAS
Google Scholar
McCloskey D, Gangoiti JA, King ZA, Naviaux RK, Barshop BA, Palsson BO, et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng. 2014;111(4):803–15.
Article
PubMed
CAS
Google Scholar
Bassalo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth Biol. 2016;5(7):561–8.
Article
PubMed
CAS
Google Scholar
Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31(9):1409–17.
Article
PubMed
CAS
Google Scholar
Krzeminski P, Leverette L, Malamis S, Katsou E. Membrane bioreactors—a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J Membr Sci. 2017;527:207–27.
Article
CAS
Google Scholar
Merchuk JC. Airlift bioreactors: review of recent advances. J Chem Eng. 2003;81:324–37.
CAS
Google Scholar
Kallio P, Pasztor A, Thiel K, Akhtar MK, Jones PR. An engineered pathway for the biosynthesis of renewable propane. Nat Commun. 2014;5:4731.
Article
PubMed
CAS
Google Scholar
Bakonyi P, Nemestóthy N, Bélafi-Bakó K. Biohydrogen purification by membranes: an overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. Int J Hydrog Energy. 2013;38(23):9673–87.
Article
CAS
Google Scholar
Wang M, Keeley R, Zalivina N, Halfhide T, Scott K, Zhang Q, et al. Advances in algal-prokaryotic wastewater treatment: a review of nitrogen transformations, reactor configurations and molecular tools. J Environ Manag. 2018;217:845–57.
Article
CAS
Google Scholar
Ishihara K, Matsuoka M, Inoue Y, Tanase S, Ogawa T, Fukuda H. Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae. J Ferment Bioeng. 1995;79:205–11.
Article
CAS
Google Scholar
Veetil VP, Angermayr SA, Hellingwerf KJ. Ethylene production with engineered Synechocystis sp. PCC 6803 strains. Microb Cell Fact. 2017;16(1):34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johansson N, Persson KO, Norbeck J, Larsson C. Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE. Biotech Bioprocess Eng. 2017;22(2):195–9.
Article
CAS
Google Scholar
Johansson N, Quehl P, Norbeck J, Larsson C. Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae. Microb Cell Fact. 2013;12(89):1–7.
Google Scholar
Sakai H, Takeoka S, Park SI, Kose T, Nishide H, Izumi Y, et al. Surface modification of hemoglobin vesicles with poly(ethylene glycol) and effects on aggregation, viscosity, and blood flow during 90% exchange transfusion in anesthetized rats. Bioconjug Chem. 1997;8(1):23–30.
Article
PubMed
CAS
Google Scholar
Takahama K, Matsuoka M, Nagahama K, Ogawa T. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng. 2003;95(3):302–5.
Article
PubMed
CAS
Google Scholar
Tao L, Dong HJ, Chen X, Chen SF, Wang TH. Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride. Appl Microbiol Biotechnol. 2008;80(4):573–8.
Article
PubMed
CAS
Google Scholar
Ishihara H, Matsuoka M, Ogawa T, Fukuda H. Ethylene production using a broad-host-range plasmid in Pseudomonas syringae and Pseudomonas putida. J Ferment Bioeng. 1996;82:509–11.
Article
CAS
Google Scholar
Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresour Technol. 2012;104:642–7.
Article
PubMed
CAS
Google Scholar
Liu C-L, Fan L-H, Liu L, Tan T-W. Combinational biosynthesis of isoprene by engineering the MEP pathway in Escherichia coli. Process Biochem. 2014;49(12):2078–85.
Article
CAS
Google Scholar
Liu H, Cheng T, Zou H, Zhang H, Xu X, Sun C, et al. High titer mevalonate fermentation and its feeding as a building block for isoprenoids (isoprene and sabinene) production in engineered Escherichia coli. Process Biochem. 2017;62(Supplement C):1–9.
Article
CAS
Google Scholar
Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, et al. Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol. 2010;6:152–63.
Article
CAS
Google Scholar
Yang J, Xian M, Su S, Zhao G, Nie Q, Jiang X, et al. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS ONE. 2012;7(4):e33509.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muir RE, Weyler W. Compositions and methods for improved isoprene production using two types of IspG enzymes. 2014.
Yang C, Gao X, Jiang Y, Sun B, Gao F, Yang S. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng. 2016;37:79–91.
Article
PubMed
CAS
Google Scholar
Kim JH, Wang C, Jang HJ, Cha MS, Park JE, Jo SY, et al. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb Cell Fact. 2016;15(1):214.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaves JE, Rueda-Romero P, Kirst H, Melis A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS Synth Biol. 2017;6:2281–92.
Article
PubMed
CAS
Google Scholar
Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng. 2010;12(1):70–9.
Article
PubMed
CAS
Google Scholar
Melis A, Lindberg P. Isoprene hydrocarbon production using genetically engineered cyanobacteria. 2014.
Bentley FK, Melis A. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng. 2012;109(1):100–9.
Article
PubMed
CAS
Google Scholar
Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol. 2011;77(7):2399–405.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hong SY, Zurbriggen AS, Melis A. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol. 2012;113(1):52–65.
Article
PubMed
CAS
Google Scholar
Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push–pull–restrain strategy. J Biotechnol. 2014;186:128–36.
Article
PubMed
CAS
Google Scholar