Uauy R, Dangour AD. Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 2006;64:72–91.
Article
Google Scholar
Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res. 2014;53:1–17.
Article
CAS
Google Scholar
Costa LG, Manzo L. Contaminants in fish: risk–benefit considerations. Arch Ind Hyg Toxicol. 2007;58(3):367–74.
CAS
Google Scholar
Jiang Y, Fan KW, Wong RT, Chen F. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem. 2004;52:1196–200.
Article
CAS
Google Scholar
Panchal BM, Padul MV, Kachole MS. Optimization of biodiesel from dried biomass of Schizochytrium limacinum using methanesulfonic acid-DMC. Renew Energy. 2016;86:1069–74.
Article
CAS
Google Scholar
Ethier S, Woisard K, Vaughan D, Wen ZY. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. 2011;102:88–93.
Article
CAS
Google Scholar
Johnson MB, Wen Z. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels. 2009;23(10):5179–83.
Article
CAS
Google Scholar
Bailey R B, Dimasi D, Hansen J M, et al. Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes infermentors. US Patent 6607900.
Chang GF, Wu J, Jiang CH, Tian G, Wu Q, Chang M, Wang X. The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31. Bioresour Technol. 2014;152:234–40.
Article
CAS
Google Scholar
Jakobsen AN, Aasen IM, Josefsen KD, Strom AR. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp strain T66: effects of N and P starvation and O-2 limitation. Appl Microbiol Biotechnol. 2008;80:297–306.
Article
CAS
Google Scholar
Chi Z, Liu Y, Frear C, Chen S. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol. 2009;81:1141–8.
Article
CAS
Google Scholar
Qu L, Ji XJ, Ren LJ, Nie ZK, Feng Y, Wu WJ, et al. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett Appl Microbiol. 2011;52:22–7.
Article
CAS
Google Scholar
Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, et al. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol. 2010;87:1649–56.
Article
CAS
Google Scholar
Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). Bmc Genomics. 2008;9:299.
Article
Google Scholar
Zhou X, Zhou J, Tian H, Yuan Y. Dynamic lipidomic insights into the adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. OMICS. 2010;14:563–74.
Article
CAS
Google Scholar
Tang X, Zan X, Zhao L, Chen H, Chen YQ, Chen W, et al. Proteomics analysis of high lipid-producing strain Mucor circinelloides, WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microb Cell Fact. 2016;15:1–16.
Article
Google Scholar
Zhang W, Li F, Nie L. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology. 2010;156(Pt 2):287–301.
Article
CAS
Google Scholar
Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science. 2001;293:290–3.
Article
CAS
Google Scholar
Ye C, Qiao WH, Yu XB, XJ J, Huang H, et al. Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. Bmc Genomics. 2015;16(1):799.
Article
Google Scholar
Li J, Ren LJ, Sun GN, Qu L, Huang H. Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS. 2013;17:269–81.
Article
CAS
Google Scholar
Ma ZX, Tan YZ, Cui GZ, Feng YG, Cui Q, Song XJ. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Rep. 2015;5:14446.
Article
CAS
Google Scholar
Morin N, Cescut J, Beopoulos A, Lelandais G, Berre VL, Uribelarrea JL, et al. Transcriptomic Analyses during the Transition from Biomass Production to Lipid Accumulation in the Oleaginous Yeast Yarrowia lipolytica. PLoS ONE. 2011;6(11):e27966.
Article
CAS
Google Scholar
Chen H, Hao G, Wang L, Wang H, Gu Z, Liu L, et al. Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi. Sci Rep. 2015;5:11247.
Article
CAS
Google Scholar
Ji XJ, Mo KQ, Ren LJ, Li GL, Huang H. Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids. Genome Announc. 2015;3(4):e00819.
Article
Google Scholar
Gessler NN, Aver’Yanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. Biochemistry. 2007;72(10):1091–109.
CAS
PubMed
Google Scholar
Ren LJ, Hu XC, Zhao XY, Chen SL, Wu Y, Li D, et al. Transcriptomic analysis of the regulation of lipid fraction migration and fatty acid biosynthesis in Schizochytrium sp. Sci Rep. 2017;7(1):3562.
Article
Google Scholar
Lin Z, Zhao H, Lai Y, Wu J, Chen H. Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode. Bioresour Technol. 2013;142:719–22.
Article
Google Scholar
Zhao X, Ren L, Guo D, Wu W, Ji X, Huang H. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis. Bioprocess Biosyst Eng. 2016;39:1297–304.
Article
CAS
Google Scholar
Sun XM, Ren LJ, Ji XJ, Chen SL, Guo DS, Huang H. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. Bioresour Technol. 2016;211:374–81.
Article
CAS
Google Scholar
Valledor L, Furuhashi T, Hanak AM, Weckwerth W. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol Cell Proteom. 2013;12:2032–47.
Article
CAS
Google Scholar
Godon C, Lagniel G, Lee J, Buhler JM, kieffer S, Perrot M, et al. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem. 1998;273:22480–9.
Article
CAS
Google Scholar
Cheng RL, Feng J, Zhang BX, Huang Y, Cheng J, Zhang CX. Transcriptome and gene expression analysis of an oleaginous diatom under different salinity conditions. Bioenergy Res. 2014;7:192–205.
Article
CAS
Google Scholar
Osada K, Maeda Y, Yoshino T, Nojma D, Bowler C, Tanaka T. Enhanced NADPH production in the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera solaris. Algal Res. 2017;23:126–34.
Article
Google Scholar
Wynn JP, Abdul Hamid A, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology. 1999;145:1911–7.
Article
CAS
Google Scholar
Zhang Y, Adams IP, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology. 2007;153:2013–25.
Article
CAS
Google Scholar
Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86(11):807–15.
Article
CAS
Google Scholar
Rzezniczak TZ, Merritt TJS. Interactions of NADP-reducing enzymes across varying environmental conditions: a model of biological complexity. G3 (Bethesda). 2012;2(12):1613–23.
Article
CAS
Google Scholar
Lehmann M, Schwarzlaender M, Obata T, Sirikantaramas S, Burow M, Olsen CE, et al. The metabolic response of arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Mol Plant. 2009;2(3):390–406.
Article
CAS
Google Scholar
Yan J, Cheng R, Lin X, You S, Li K, Rong H, Ma Y. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biotechnol. 2013;97:1933–9.
Article
CAS
Google Scholar
Harris RA, Joshi M, Jeoung NH, Obayashi M. Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr. 2005;135(6 Suppl):1527S–30S.
Article
CAS
Google Scholar
Pietrocola F, Galluzzi L, Bravo-Sanpedro J, Madeo F, Kroemer G. Acetyl coenzyme a: a central metabolite and second messenger. Cell Metab. 2015;21(6):805–21.
Article
CAS
Google Scholar
Chen W, Zhou PP, Zhang M, Zhu YM, Wang XP, Luo XA, et al. Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used. Algal Res. 2016;15:83–92.
Article
Google Scholar
Napier JA. Plumbing the depths of PUFA biosynthesis: a novel polyketide synthase-like pathway from marine organisms. Trends Plant Sci. 2002;7:51–4.
Article
CAS
Google Scholar
Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids. 2009;44:621–30.
Article
CAS
Google Scholar
Hoang MH, Nguyen C, Pham HQ, Nauyen LV, Le HD, et al. Transcriptome sequencing and comparative analysis of Schizochytrium mangrovei, PQ6 at different cultivation times. Biotech Lett. 2016;38(10):1–9.
Article
Google Scholar
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51(1–44):1–51.
CAS
PubMed
Google Scholar
Guichardant M, Chen P, Liu M, Calzada C, Colas R, Vericel E, et al. Functional lipidomics of oxidized products from polyunsaturated fatty acids. Chem Phys Lipids. 2011;164:544–8.
Article
CAS
Google Scholar
Johansson M, Chen X, Milanova S, Santos C, Petranovic D. PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast. Fems Yeast Res. 2016;16(2):007.
Article
Google Scholar
Ruenwai R, Neiss A, Laoteng K, Vongsangnak W, Dalfard AB, Cheevadhanarak S, et al. Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J. 2015;6:343–56.
Article
Google Scholar
Tripathi BN, Gaur JP. Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta. 2004;219:397–404.
Article
CAS
Google Scholar
Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17:3–8.
Article
CAS
Google Scholar
Kumar J, Singh VP, Prasad SM. NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation. J Photochem Photobiol B. 2015;151:221–32.
Article
CAS
Google Scholar
Li Q, McNeil B, Harvey LM. Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Rad Biol Med. 2008;44:394–402.
Article
CAS
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 1966;25:1966–7.
Article
Google Scholar
Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
CAS
Google Scholar
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7:986–95.
Article
CAS
Google Scholar
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–88.
Article
Google Scholar
Zhu Y, Zhou P, Hu J, Zhang R, Ren L, Li M, Ning F, Chen W, Yu L. Characterization of Pythium transcriptome and gene expression analysis at different stages of fermentation. PLoS ONE. 2013;8:e65552.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar