Maity SK. Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energ Rev. 2015;43:1427–45.
Article
CAS
Google Scholar
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153(3):895–905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev. 2004;3:29–60.
Article
CAS
Google Scholar
Chen Z, Wan C. Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sust Energy Rev. 2017;73:610–21.
Article
CAS
Google Scholar
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843.
Article
PubMed
CAS
Google Scholar
Nguyen Q, Bowyer J, Howe J, Bratkovich S, Groot H, Pepke E, et al. Global production of second generation biofuels: trends and influences http://www.dovetailinc.org/report_pdfs/2017/dovetailbiofuels0117.pdf2017. Accessed 01 Jun 2017.
Bruijnincx PCA, Rinaldi R, Weckhuysen BM. Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green Chem. 2015;17(11):4860–1.
Article
CAS
Google Scholar
Wang H, Pu Y, Ragauskas A, Yang B. From lignin to valuable products—strategies, challenges, and prospects. Bioresour Technol. 2019;271:449–61.
Article
CAS
PubMed
Google Scholar
Corona A, Biddy MJ, Vardon DR, Birkved M, Hauschild MZ, Beckham GT. Life cycle assessment of adipic acid production from lignin. Green Chem. 2018;20(16):3857–66.
Article
CAS
Google Scholar
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed Engl. 2016;55(29):8164–215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47(3):852–908.
Article
CAS
PubMed
Google Scholar
Li C, Zhao X, Wang A, Huber GW, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015;115(21):11559–624.
Article
CAS
PubMed
Google Scholar
Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem. 2017;19(18):4200–33.
Article
CAS
Google Scholar
Lancefield CS, Ojo OS, Tran F, Westwood NJ. Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the beta-O-4 linkages in lignin. Angew Chem Int Ed Engl. 2015;54(1):258–62.
Article
CAS
PubMed
Google Scholar
Toledano A, Serrano L, Balu AM, Luque R, Pineda A, Labidi J. Fractionation of organosolv lignin from olive tree clippings and its valorization to simple phenolic compounds. Chemsuschem. 2013;6(3):529–36.
Article
CAS
PubMed
Google Scholar
Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA. 2014;111(33):12013–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chai LY, Chen YH, Tang CJ, Yang ZH, Zheng Y, Shi Y. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol. 2014;98(4):1907–12.
Article
CAS
PubMed
Google Scholar
Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol. 2012;112(5):900–6.
Article
CAS
PubMed
Google Scholar
Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, et al. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol. 2012;123:682–5.
Article
CAS
PubMed
Google Scholar
Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, et al. Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci USA. 2017;114(18):4709–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou H, Guo W, Xu B, Teng Z, Tao D, Lou Y, et al. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog. 2017;112:63–9.
Article
CAS
PubMed
Google Scholar
Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK. Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int Biodeterior Biodegrad. 2016;112:12–7.
Article
CAS
Google Scholar
Xiong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW, et al. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol. 2014;58(2):123–9.
Article
CAS
PubMed
Google Scholar
Jackson CA, Couger MB, Prabhakaran M, Ramachandriya KD, Canaan P, Fathepure BZ. Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass. J Appl Microbiol. 2017;122(4):940–52.
Article
CAS
PubMed
Google Scholar
Picart P, Wiermans L, Pérez-Sánchez M, Grande PM, Schallmey A, María P. Assessing lignin types to screen novel biomass-degrading microbial strains: synthetic lignin as useful carbon source. ACS Sustain Chem Eng. 2016;4(3):651–5.
Article
CAS
Google Scholar
Raj A, Reddy MM, Chandra R, Purohit HJ, Kapley A. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation. 2007;18(6):783–92.
Article
CAS
PubMed
Google Scholar
Raj A, Chandra R, Reddy MMK, Purohit HJ, Kapley A. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J Microbiol Biotechnol. 2007;23(6):793–9.
Article
CAS
Google Scholar
Xu Z, Qin L, Cai M, Hua W, Jin M. Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ Sci Pollut Res Int. 2018;25(14):14171–81.
Article
CAS
PubMed
Google Scholar
Huang X-F, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, et al. Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng. 2013;110(6):1616–26.
Article
CAS
PubMed
Google Scholar
Ravi K, Garcia-Hidalgo J, Nobel M, Gorwa-Grauslund MF, Liden G. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express. 2018;8(1):32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asina F, Brzonova I, Voeller K, Kozliak E, Kubatova A, Yao B, et al. Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol. 2016;220:414–24.
Article
CAS
PubMed
Google Scholar
Tian JH, Pourcher AM, Peu P. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol. 2016;63(1):30–7.
Article
CAS
PubMed
Google Scholar
Rahman NHA, Rahman NAA, Aziz SA, Hassan MA. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. BioResources. 2013;8(4):6136–50.
Google Scholar
Chong GG, Huang XJ, Di JH, Xu DZ, He YC, Pei YN, et al. Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess Biosyst Eng. 2018;41(4):501–10.
Article
CAS
PubMed
Google Scholar
Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, et al. Synergistic enzymatic and microbial lignin conversion. Green Chem. 2016;18(5):1306–12.
Article
CAS
Google Scholar
Joshua CJ, Simmons BA, Singer SW. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties. RSC Adv. 2016;6(59):54382–93.
Article
CAS
Google Scholar
Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Growth of sedimentary bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA. 2018;115(23):6022–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol. 2014;98(23):9527–44.
Article
CAS
PubMed
Google Scholar
Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, et al. Lignin depolymerization and utilization by bacteria. Bioresour Technol. 2018;269:557–66.
Article
CAS
PubMed
Google Scholar
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, et al. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol Biofuels. 2017;10:44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sana B, Chia KH, Raghavan SS, Ramalingam B, Nagarajan N, Seayad J, et al. Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. Biotechnol Biofuels. 2017;10:32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J, et al. Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels. 2016;9:25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mallinson SJB, Machovina MM, Silveira RL, Garcia-Borras M, Gallup N, Johnson CW, et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat Commun. 2018;9(1):2487.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixao DAA, et al. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels. 2018;11:75.
Article
PubMed
PubMed Central
Google Scholar
Zhu D, Si H, Zhang P, Geng A, Zhang W, Yang B, et al. Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35. Biotechnol Biofuels. 2018;11:338.
Article
PubMed
PubMed Central
Google Scholar
Zhuo S, Yan X, Liu D, Si M, Zhang K, Liu M, et al. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion. Biotechnol Biofuels. 2018;11:146.
Article
PubMed
PubMed Central
Google Scholar
Hooda R, Bhardwaj NK, Singh P. Brevibacillus parabrevis MTCC 12105: a potential bacterium for pulp and paper effluent degradation. World J Microbiol Biotechnol. 2018;34(2):31.
Article
PubMed
CAS
Google Scholar
Majumdar S, Priyadarshinee R, Kumar A, Mandal T, Dasgupta Mandal D. Exploring Planococcus sp TRC1, a bacterial isolate, for carotenoid pigment production and detoxification of paper mill effluent in immobilized fluidized bed reactor. J Clean Prod. 2019;211:1389–402.
Article
CAS
Google Scholar
Bharagava RN, Mani S, Mulla SI, Saratale GD. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf. 2018;156:166–75.
Article
CAS
PubMed
Google Scholar
Si M, Yan X, Liu M, Shi M, Wang Z, Wang S, et al. In situ lignin bioconversion promotes complete carbohydrate conversion of rice straw by Cupriavidus basilensis B-8. ACS Sustain Chem Eng. 2018;6(6):7969–78.
Article
CAS
Google Scholar
Bugg TD, Rahmanpour R. Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol. 2015;29:10–7.
Article
CAS
PubMed
Google Scholar
Brown ME, Chang MC. Exploring bacterial lignin degradation. Curr Opin Chem Biol. 2014;19:1–7.
Article
CAS
PubMed
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22(3):394–400.
Article
CAS
PubMed
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28(12):1883–96.
Article
CAS
PubMed
Google Scholar
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol. 2016;236:110–9.
Article
PubMed
CAS
Google Scholar
Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, et al. Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst. 2010;6(5):815–21.
Article
CAS
PubMed
Google Scholar
Bugg TDH, Winfield CJ. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat Prod Rep. 1998;5(15):513–30.
Article
Google Scholar
Mansfield SD, Kim H, Lu F, Ralph J. Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc. 2012;7(9):1579–89.
Article
CAS
PubMed
Google Scholar
Mussatto SI, Dragone G, Roberto IC. Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind Crops Prod. 2007;25(2):231–7.
Article
CAS
Google Scholar
Jonsson LJ, Martin C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12.
Article
PubMed
CAS
Google Scholar
Mishra S, Sachan A, Vidyarthi AS, Sachan SG. Transformation of ferulic acid to 4-vinyl guaiacol as a major metabolite: a microbial approach. Rev Environ Sci Bio. 2014;13(4):377–85.
Article
CAS
Google Scholar
Kadakol JC, Kamanavalli CM. Biodegradation of eugenol by bacillus cereus strain PN24. E J Chem. 2010;7(S1):S474–80.
Article
CAS
Google Scholar
Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, et al. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS ONE. 2013;8(6):e67339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masai E, Harada K, Peng X, Kitayama H, Katayama Y, Fukuda M. Cloning and Characterization of the Ferulic Acid Catabolic Genes of Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol. 2002;68(9):4416–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra A, Kitamura Y, Gasson MJ, Narbad A, Parr AJ, Payne J, et al. 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL)—an enzyme of phenylpropanoid chain cleavage from Pseudomonas. Arch Biochem Biophys. 1999;365(1):10–6.
Article
CAS
PubMed
Google Scholar
Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ, et al. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol. 2006;72(4):745–55.
Article
CAS
PubMed
Google Scholar
Gallage NJ, Moller BL. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8(1):40–57.
Article
CAS
PubMed
Google Scholar
Priefert H, Rabenhorst J, Steinbüchel A. Biotechnological production of vanillin. Appl Microbiol Biotechnol. 2001;56(3–4):296–314.
Article
CAS
PubMed
Google Scholar
Jung DH, Kim EJ, Jung E, Kazlauskas RJ, Choi KY, Kim BG. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1. Biotechnol Bioeng. 2016;113(7):1493–503.
Article
CAS
PubMed
Google Scholar
Jung DH, Choi W, Choi KY, Jung E, Yun H, Kazlauskas RJ, et al. Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol. 2013;97(4):1501–11.
Article
CAS
PubMed
Google Scholar
Trautwein K, Wilkes H, Rabus R. Proteogenomic evidence for beta-oxidation of plant-derived 3-phenylpropanoids in “Aromatoleum aromaticum” EbN1. Proteomics. 2012;12(9):1402–13.
Article
CAS
PubMed
Google Scholar
Achterholt S, Priefert H, Steinbüchel A. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol. 2000;54(6):799–807.
Article
CAS
PubMed
Google Scholar
Wang W, Zhang C, Sun X, Su S, Li Q, Linhardt RJ. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes. World J Microbiol Biotechnol. 2017;33(6):125.
Article
PubMed
CAS
Google Scholar
Katayama Y. Cloning and expression of Pseudomonas paucimobilis SYK-6 genes involved in the degradation of vanillate and protocatechuate in P. putida. Mokuzai Gakkaishi. 1987;33:77–9.
CAS
Google Scholar
Kasai D, Masai E, Miyauchi K, Katayama Y, Fukuda M. Characterization of the 3-O-methylgallate dioxygenase gene and evidence of multiple 3-O-methylgallate catabolic pathways in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2004;186(15):4951–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasai D, Masai E, Miyauchi K, Katayama Y, Fukuda M. Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. J Bacteriol. 2005;187(15):5067–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barry KP, Taylor EA. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry. 2013;52(38):6724–36.
Article
CAS
PubMed
Google Scholar
Kasai D, Masai E, Katayama Y, Fukuda M. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase. FEMS Microbiol Lett. 2007;274(2):323–8.
Article
CAS
PubMed
Google Scholar
Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007;71(1):1–15.
Article
CAS
PubMed
Google Scholar
Yamanashi T, Kim SY, Hara H, Funa N. In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechuate branch of the beta-ketoadipate pathway in Rhodococcus jostii RHA1. Biosci Biotechnol Biochem. 2015;79(5):830–5.
Article
CAS
PubMed
Google Scholar
Harwood CS, Parales RE. The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90.
Article
CAS
PubMed
Google Scholar
Ni B, Zhang Y, Chen DW, Wang BJ, Liu SJ. Assimilation of aromatic compounds by Comamonas testosteroni: characterization and spreadability of protocatechuate 4,5-cleavage pathway in bacteria. Appl Microbiol Biotechnol. 2013;97(13):6031–41.
Article
CAS
PubMed
Google Scholar
Kamimura N, Aoyama T, Yoshida R, Takahashi K, Kasai D, Abe T, et al. Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene. Appl Environ Microbiol. 2010;76(24):8093–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamimura N, Masai E. The protocatechuate 4,5-cleavage pathway: overview and new findings. Nojiri H, Tsuda M, Fukuda M, Kamagata Y, editors. Springer; 2014. p. 207–26.
Kasai D, Fujinami T, Abe T, Mase K, Katayama Y, Fukuda M, et al. Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol. 2009;191(21):6758–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolgel SA, Dege JE, Perkins-Olson PE, Jaurez-Garcia CH, Crawford RL, Münck E, et al. Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol. 1993;175(14):4414–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vesely M, Knoppova M, Nesvera J, Patek M. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl Microbiol Biotechnol. 2007;76(1):159–68.
Article
CAS
PubMed
Google Scholar
Ahmad SA, Shamaan NA, Syed MA, Khalid A, Ab Rahman NA, Khalil KA, et al. Meta-cleavage pathway of phenol degradation by Acinetobacter sp. strain AQ5NOL 1. Rendiconti Lincei. 2017;28(1):1–9.
Article
Google Scholar
Mahiudddin M, Fakhruddin AN, Abdullah Al M. Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol. 2012;2012:741820.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kita A, Kita S-I, Fujisawa I, Inaka K, Ishida T, Horiike K, et al. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt. Structure. 1999;7(1):25–34.
Article
CAS
PubMed
Google Scholar
Kukor JJ, Olsen RH. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J Bacteriol. 1991;173(15):4587–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes EJ, Bayly RC. Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. J Bacteriol. 1983;154(3):1363–70.
CAS
PubMed
PubMed Central
Google Scholar
Hamzah RY, Al-Baharna BS. Catechol ring-cleavage in Pseudomonas cepacia: the simultaneous induction of ortho and meta pathways. Appl Microbiol Biotechnol. 1994;41(2):250–6.
Article
CAS
Google Scholar
Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, Garcia-Hidalgo J, et al. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34(8):1318–46.
Article
CAS
PubMed
Google Scholar
Seaton SC, Neidle EL. Lignin valorization: Royal Society of Chemistry; 2018.
Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R. A review on microbial lipids as a potential biofuel. Bioresour Technol. 2018;259:451–60.
Article
CAS
PubMed
Google Scholar
Mahan KM, Le RK, Yuan J, Ragauskas AJ. A review on the bioconversion of lignin to microbial lipid with oleaginous Rhodococcus opacus. J Biotechnol Biomater. 2017;07(02):262.
Article
Google Scholar
Kosa M, Ragauskas AJ. Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol. 2012;93(2):891–900.
Article
CAS
PubMed
Google Scholar
Shields-Menard SA, AmirSadeghi M, Green M, Womack E, Sparks DL, Blake J, et al. The effects of model aromatic lignin compounds on growth and lipid accumulation of Rhodococcus rhodochrous. Int Biodeterior Biodegrad. 2017;121:79–90.
Article
CAS
Google Scholar
Kosa M. Direct and multistep conversion of lignin to biofuels: Georgia Institute of Technology; 2012.
Kosa M, Ragauskas AJ. Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chem. 2013;15(8):2070.
Article
CAS
Google Scholar
Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem. 2015;17(5):2784–9.
Article
CAS
Google Scholar
He Y, Li X, Ben H, Xue X, Yang B. lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng. 2017;5(3):2302–11.
Article
CAS
Google Scholar
Le RK, Wells T Jr, Das P, Meng X, Stoklosa RJ, Bhalla A, et al. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Adv. 2017;7(7):4108–15.
Article
CAS
Google Scholar
He Y, Li X, Xue X, Swita MS, Schmidt AJ, Yang B. Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci. Bioresour Technol. 2017;224:457–64.
Article
CAS
PubMed
Google Scholar
Goswami L, Tejas Namboodiri MM, Vinoth Kumar R, Pakshirajan K, Pugazhenthi G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energy. 2017;105:400–6.
Article
CAS
Google Scholar
Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A. PHA recovery from biomass. Biomacromology. 2013;14(9):2963–72.
Article
CAS
Google Scholar
Kumar M, Singhal A, Verma PK, Thakur IS. Production and Characterization of Polyhydroxyalkanoate from Lignin Derivatives by Pandoraea sp. ISTKB. ACS Omega. 2017;2(12):9156–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomizawa S, Chuah J-A, Matsumoto K, Doi Y, Numata K. Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustain Chem Eng. 2014;2(5):1106–13.
Article
CAS
Google Scholar
Zhang Y, Wusiman A, Liu X, Wan C, Lee DJ, Tay J. Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: batch study and impacts of operational conditions. J Biotechnol. 2018;267:36–44.
Article
CAS
PubMed
Google Scholar
Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, et al. Simultaneous improvements of Pseudomonas cell growth and Polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl Environ Microbiol. 2018;84(18):e01469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT. Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 2015;17(11):4951–67.
Article
CAS
Google Scholar
Kumar P, Maharjan A, Jun HB, Kim BS. Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: challenges and opportunities. Biotechnol Appl Biochem. 2018. https://doi.org/10.1002/bab.1720.
Article
PubMed
Google Scholar
Shi Y, Yan X, Li Q, Wang X, Liu M, Xie S, et al. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem. 2017;52:238–42.
Article
CAS
Google Scholar
Liu Z-H, Olson ML, Shinde S, Wang X, Hao N, Yoo CG, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chem. 2017;19(20):4939–55.
Article
CAS
Google Scholar
Lin L, Cheng Y, Pu Y, Sun S, Li X, Jin M, et al. Systems biology-guided biodesign of consolidated lignin conversion. Green Chem. 2016;18(20):5536–47.
Article
CAS
Google Scholar
Wu W, Dutta T, Varman AM, Eudes A, Manalansan B, Loque D, et al. Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Sci Rep. 2017;7(1):8420.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, et al. Adipic acid production from lignin. Energy Environ Sci. 2015;8(2):617–28.
Article
CAS
Google Scholar
Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab Eng Commun. 2017;5:19–25.
Article
PubMed
PubMed Central
Google Scholar
Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun. 2016;3:111–9.
Article
PubMed
PubMed Central
Google Scholar
Salvachúa D, Johnson CW, Singer CA, Rohrer H, Peterson DJ, Black BA, et al. Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem. 2018;20(21):5007–19.
Article
Google Scholar
Vardon DR, Rorrer NA, Salvachúa D, Settle AE, Johnson CW, Menart MJ, et al. cis, cis-muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chem. 2016;18(11):3397–413.
Article
CAS
Google Scholar
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng. 2018;47:279–93.
Article
CAS
PubMed
Google Scholar
Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C. Enabling the valorization of guaiacol-based lignin: integrated chemical and biochemical production of cis, cis-muconic acid using metabolically engineered Amycolatopsis sp. ATCC 39116. Metab Eng. 2018;45:200–10.
Article
CAS
PubMed
Google Scholar
Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Fact. 2018;17(1):115.
Article
PubMed
PubMed Central
Google Scholar
Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, et al. Glucose-free cis, cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. ACS Sustain Chem Eng. 2017;6(1):1256–64.
Article
CAS
Google Scholar
Clarkson SM, Giannone RJ, Kridelbaugh DM, Elkins JG, Guss AM, Michener JK. Construction and optimization of a heterologous pathway for protocatechuate catabolism in Escherichia coli enables bioconversion of model aromatic compounds. Appl Environ Microbiol. 2017;83(18):e01313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu W, Liu F, Singh S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc Natl Acad Sci USA. 2018;115(12):2970–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varman AM, Follenfant R, Liu F, Davis RW, Lin YK, Singh S. Hybrid phenolic-inducible promoters towards construction of self-inducible systems for microbial lignin valorization. Biotechnol Biofuels. 2018;11(1):182.
Article
PubMed
PubMed Central
Google Scholar
Fache M, Boutevin B, Caillol S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng. 2015;4(1):35–46.
Article
CAS
Google Scholar
Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, et al. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol. 2013;8(10):2151–6.
Article
CAS
PubMed
Google Scholar
Sharma RK, Mukhopadhyay D, Gupta P. Microbial Fuel cell mediated lignin depolymerization: a sustainable approach. J Chem Technol Biotechnol. 2018;1:1. https://doi.org/10.1002/jctb.5841.
Article
CAS
Google Scholar
Soni MG, Carabin IG, Burdock GA. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol. 2005;43(7):985–1015.
Article
CAS
PubMed
Google Scholar
Nemec MJ, Kim H, Marciante AB, Barnes RC, Talcott ST, Mertens-Talcott SU. Pyrogallol, an absorbable microbial gallotannins-metabolite and mango polyphenols (Mangifera Indica L.) suppress breast cancer ductal carcinoma in situ proliferation in vitro. Food Funct. 2016;7(9):3825–33.
Article
CAS
PubMed
Google Scholar
Johnson CW, Beckham GT. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metab Eng. 2015;28:240–7.
Article
CAS
PubMed
Google Scholar
Mulat DG, Dibdiakova J, Horn SJ. Microbial biogas production from hydrolysis lignin: insight into lignin structural changes. Biotechnol Biofuels. 2018;11:61.
Article
PubMed
PubMed Central
Google Scholar
Narron RH, Kim H, Chang HM, Jameel H, Park S. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol. 2016;38:39–46.
Article
CAS
PubMed
Google Scholar
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: Update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9(6):679–705.
Article
CAS
PubMed
Google Scholar
Nesvera J, Rucka L, Patek M. Adv Appl Microbiol. Academic Press; 2015. p. 107–60.
Bandounas L, Wierckx NJ, Winde JH, Ruijssenaars HJ. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol. 2011;11(1):94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravi K, Garcia-Hidalgo J, Gorwa-Grauslund MF, Liden G. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol. 2017;101(12):5059–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akita H, Kimura Z, Mohd Yusoff MZ, Nakashima N, Hoshino T. Isolation and characterization of Burkholderia sp. strain CCA53 exhibiting ligninolytic potential. Springerplus. 2016;5:596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Manter DK, Hunter WJ, Vivanco JM. Enterobacter soli sp. nov.: a lignin-degrading gamma-proteobacteria isolated from soil. Curr Microbiol. 2011;62(3):1044–9.
Article
CAS
PubMed
Google Scholar
Yang C, Yue F, Cui Y, Xu Y, Shan Y, Liu B, et al. Biodegradation of lignin by Pseudomonas sp Q18 and the characterization of a novel bacterial DyP-type peroxidase. J Ind Microbiol Biotechnol. 2018;45(10):913–27.
Article
CAS
PubMed
Google Scholar
Duan J, Huo X, Du WJ, Liang JD, Wang DQ, Yang SC. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2. Lett Appl Microbiol. 2016;62(1):55–62.
Article
CAS
PubMed
Google Scholar
Mathews SL, Pawlak JJ, Grunden AM. Isolation of Paenibacillus glucanolyticus from pulp mill sources with potential to deconstruct pulping waste. Bioresour Technol. 2014;164:100–5.
Article
CAS
PubMed
Google Scholar
Chang YC, Choi D, Takamizawa K, Kikuchi S. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol. 2014;152:429–36.
Article
CAS
PubMed
Google Scholar
Zhou G, Zhuang X, Yuan Z, Tan X, Qi W, Yu Q, et al. Isolation of Streptomyces sp. strains capable of degrading lignin under alkaline conditions and its degradation properties. J Biobased Mater Bio. 2016;10(6):458–62.
Article
CAS
Google Scholar
Alvarez HM, Mayer F, Fabritius D, Steinbüchel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996;165(6):377–86.
Article
CAS
PubMed
Google Scholar
Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol. 1995;61(9):3353–8.
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Li N, Pan X. Transformation of ammonia fiber expansion (AFEX) corn stover lignin into microbial lipids by Rhodococcus opacus. Fuel. 2019;240:119–25.
Article
CAS
Google Scholar
Liu ZH, Xie S, Lin F, Jin M, Yuan JS. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnol Biofuels. 2018;11:21.
Article
PubMed
PubMed Central
Google Scholar
Jayakody LN, Johnson CW, Whitham JM, Giannone RJ, Black BA, Cleveland NS, et al. Thermochemical wastewater valorization via enhanced microbial toxicity tolerance. Energy Environ Sci. 2018;11(6):1625–38.
Article
CAS
Google Scholar
Numata K, Morisaki K. Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustain Chem Eng. 2015;3(4):569–73.
Article
CAS
Google Scholar
Xu Z, Li X, Hao N, Pan C, Torre L, Ahamed A, et al. Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. Bioresour Technol. 2018;273:538–44.
Article
PubMed
CAS
Google Scholar
Sonoki T, Morooka M, Sakamoto K, Otsuka Y, Nakamura M, Jellison J, et al. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J Biotechnol. 2014;192(Pt A):71–7.
Article
CAS
PubMed
Google Scholar