Ma Y, Gao Z, Wang Q, Liu Y. Biodiesels from microbial oils: opportunity and challenges. Bioresour Technol. 2018;263:631–41.
Article
CAS
PubMed
Google Scholar
Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R. A review on microbial lipids as a potential biofuel. Bioresour Technol. 2018;259:451–60.
Article
CAS
PubMed
Google Scholar
’t Lam GP, Vermuë MH, Eppink MHM, Wijffels RH, van den Berg C. Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol. 2018;36:216–27.
Article
PubMed
CAS
Google Scholar
Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin. 2009;3:431–40.
Article
CAS
Google Scholar
Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004;86:807–15.
Article
CAS
PubMed
Google Scholar
Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human ∆-5 desaturase cloning, expression, and fatty acid regulation of the human ∆-5 desaturase. J Biol Chem. 1999;274:37335–9.
Article
CAS
PubMed
Google Scholar
Jump DB, Depner CM, Tripathy S. Omega-3 fatty acid supplementation and cardiovascular disease. J Lipid Res. 2012;53:2525–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahidi F, Wanasundara UN. Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends Food Sci Technol. 1998;9:230–40.
Article
CAS
Google Scholar
Rubio-Rodríguez N, Beltrán S, Jaime I, de Diego SM, Sanz MT, Carballido JR. Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Technol. 2010;11:1–12.
Article
CAS
Google Scholar
Somerville C, Browse J. Plant lipids: Metabolism, mutants, and membranes. Science (80-). 1991;252:80–7.
Article
CAS
Google Scholar
Alonso DL, Maroto FG. Plants as “chemical factories” for the production of polyunsaturated fatty acids. Biotechnol Adv. 2000;18:481–97.
Article
CAS
PubMed
Google Scholar
Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005;40:3627–52.
Article
CAS
Google Scholar
Scheben A, Edwards D. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol. 2018;19:178.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009;48:375–87.
Article
CAS
PubMed
Google Scholar
Beopoulos A, Nicaud JM. Yeast: a new oil producer? OCL—Ol Corps Gras Lipides. 2012;19:22–8.
Article
Google Scholar
Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL. 2013;20:D602.
Article
Google Scholar
Raghukumar S. Thraustochytrid marine protists : production of PUFAs and other emerging technologies. Mar Biotechnol. 2008;10:631–40.
Article
CAS
Google Scholar
Selvaraj M, Kumar TS, Rao MV. Squalene, biosynthesis and its role in production of bioactive compounds, a proper scientific challenge—a review. J Emerg Technol Innov Res. 2019;6:505–26.
Google Scholar
Xu W, Ma X, Wang Y. Production of squalene by microbes: an update. World J Microbiol Biotechnol. 2016;32:195.
Article
PubMed
CAS
Google Scholar
Pollier J, Vancaester E, Kuzhiumparambil U, Vickers CE, Vandepoele K, Goossens A, et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat Microbiol. 2019;4:226–33.
Article
CAS
PubMed
Google Scholar
Kilincalp S, Deveci M, Basar O, Ekiz F, Coban S, Yuksel O. Shark liver oil: hidden dangers. Ann Hepatol. 2012;11:728–30.
Article
PubMed
Google Scholar
Storelli MM, Ceci E, Storelli A, Marcotrigiano GO. Polychlorinated biphenyl, heavy metal and methylmercury residues in hammerhead sharks: contaminant status and assessment. Mar Pollut Bull. 2003;46:1035–9.
Article
CAS
PubMed
Google Scholar
Güneş FE. Medical use of squalene as a natural antioxidant. J Marmara Univ Inst Heal Sci. 2013;3:220–8.
Google Scholar
Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019;567:118–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown AJ, Chua NK, Yan N. The shape of human squalene epoxidase expands the arsenal against cancer. Nat Commun. 2019;10:2–5.
Article
CAS
Google Scholar
Reddy LH, Couvreur P. Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev. 2009;61:1412–26.
Article
CAS
PubMed
Google Scholar
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: advances, challenges and opportunities. Front Bioeng Biotechnol. 2019;7:1–24.
Article
Google Scholar
Oya SI, Kanno D, Watanabe H, Tamura M, Nakagawa Y, Tomishige K. Catalytic production of branched small alkanes from biohydrocarbons. Chemsuschem. 2015;8:2472–5.
Article
CAS
PubMed
Google Scholar
Zhang K, Zhang X, Tan T. The production of bio-jet fuel from: botryococcus braunii liquid over a Ru/CeO2 catalyst. RSC Adv R Soc Chem. 2016;6:99842–50.
Article
CAS
Google Scholar
Rosales-Garcia T, Jimenez-Martinez C, Davila-Ortiz G. Squalene extraction: biological sources and extraction methods. Int J Environ Agric Biotechnol. 2017;2:1662–70.
Article
Google Scholar
Popa O, Bəbeanu NE, Popa I, Niţə S, Dinu-Pârvu CE. Methods for obtaining and determination of squalene from natural sources. Biomed Res Int. 2015;2015:16.
Article
CAS
Google Scholar
Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour Technol. 2017;244:1269–80.
Article
CAS
PubMed
Google Scholar
Liu B, Ertesvåg H, Aasen IM, Vadstein O, Brautaset T, Heggeset TMB. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66. Genomics Data. 2016;8:115–6.
Article
PubMed
PubMed Central
Google Scholar
Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, et al. Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl Biochem Biotechnol. 2011;164:1468–80.
Article
CAS
PubMed
Google Scholar
Nakazawa A, Matsuura H, Kose R, Ito K, Ueda M, Honda D, et al. Optimization of biomass and fatty acid production by Aurantiochytrium sp. strain 4W-1b. Procedia Environ Sci. 2012;15:27–33.
Article
CAS
Google Scholar
Matsakas L, Nitsos C, Raghavendran V, Yakimenko O, Persson G, Olsson E, et al. A novel hybrid organosolv—steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol Biofuels. 2018;11:1–14.
Article
CAS
Google Scholar
Patel A, Matsakas L, Rova U, Christakopoulos P. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol Biofuels. 2018;11:169.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol. 2011;91:31–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nazir Y, Shuib S, Kalil MS, Song Y, Hamid AA. Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology. Sci Rep. 2018;8:1–12.
Article
CAS
Google Scholar
Gao M, Song X, Feng Y, Li W, Cui Q. Isolation and characterization of Aurantiochytrium species: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp. SD116. J Oleo Sci. 2013;62:143–51.
Article
CAS
PubMed
Google Scholar
Safdar W, Zan X, Song Y. Synergistic effect of phosphorus and nitrogen on growth, lipid accumulation and docosahexaenoic acid production in Crypthecodinium Cohnii. Int J Agric Innov Res. 2017;5:768–75.
Google Scholar
Chang G, Luo Z, Gu S, Wu Q, Chang M, Wang X. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour Technol. 2013;142:255–60.
Article
CAS
PubMed
Google Scholar
Gupta A, Barrow CJ, Puri M. Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv. 2012;30:1733–45.
Article
CAS
PubMed
Google Scholar
Furlan VJM, Maus V, Batista I, Bandarra NM. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Braz J Microbiol Sociedade Brasileira de Microbiol. 2017;48:359–65.
Article
CAS
Google Scholar
Wu ST, Yu ST, Lin LP. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem. 2005;40:3103–8.
Article
CAS
Google Scholar
Papanikolaou S, Sarantou S, Komaitis M, Aggelis G. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol. 2004;97:867–75.
Article
CAS
PubMed
Google Scholar
Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci Biotechnol Biochem. 2011;75:2246–8.
Article
CAS
PubMed
Google Scholar
Barclay WR, Meager KM, Abril JR. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol. 1994;6:123–9.
Article
CAS
Google Scholar
Wu ST, Lin LP. Application of response surface methodology to optimize docosahexaenoic acid production by Schizochytrium sp. S31. J Food Biochem. 2003;27:127–39.
Article
CAS
Google Scholar
Wu K, Ding L, Zhu P, Li S, He S. Application of the response surface methodology to optimize the fermentation parameters for enhanced docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 26185. Molecules. 2018;23:974.
Article
PubMed Central
CAS
Google Scholar
Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, et al. Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng. 1996;81:76–8.
Article
CAS
Google Scholar
Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D. Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from yap islands. JAOCS J Am Oil Chem Soc. 1996;73:1421–6.
Article
CAS
Google Scholar
Jiang Y, Fan K-W, Tsz-Yeung Wong R, Chen F. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem. 2004;52:1196–200.
Article
CAS
PubMed
Google Scholar
Aki T, Hachida K, Yoshinaga M, Katai Y, Yamasaki T, Kawamoto S, et al. Thraustochytrid as a potential source of carotenoids. JAOCS J Am Oil Chem Soc. 2003;80:789–94.
Article
CAS
Google Scholar
Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, et al. TLC screening of thraustochytrid strains for squalene production. J Appl Phycol. 2014;26:29–41.
Article
CAS
Google Scholar
Yue CJ, Jiang Y. Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei. Process Biochem. 2009;44:923–7.
Article
CAS
Google Scholar
Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour Technol. 2012;109:287–91.
Article
CAS
PubMed
Google Scholar
Gao S, Tong Y, Zhu L, Ge M, Zhang Y, Chen D, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng. 2017;41:192–201.
Article
CAS
PubMed
Google Scholar
Ghimire GP, Hei CL, Jae KS. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol. 2009;75:7291–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasool A, Zhang G, Li Z, Li C. Engineering of the terpenoid pathway in Saccharomyces cerevisiae co-overproduces squalene and the non-terpenoid compound oleic acid. Chem Eng Sci. 2016;152:457–67.
Article
CAS
Google Scholar
Artificial Seawater Medium Recipe. p. 1. https://utex.org/products/artificial-seawater-medium. Accessed 28 Sept 2019.
Park WK, Moon M, Shin SE, Cho JM, Suh WI, Chang YK, et al. Economical DHA (docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 2018;29:71–9.
Article
Google Scholar
Patil KP, Gogate PR. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem Eng J. 2015;268:187–96.
Article
CAS
Google Scholar
Chen G, Fan KW, Lu FP, Li Q, Aki T, Chen F, et al. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N Biotechnol. 2010;27:382–9.
Article
CAS
PubMed
Google Scholar