Coma M, Martinez-Hernandez E, Abeln F, Raikova S, Donnelly J, Arnot TC, et al. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss. 2017;202:175–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahring BK, Westermann P. Coproduction of bioethanol with other biofuels. Biofuels, Adv Biochem Engin Biotechnol. 2007;108:289–302.
CAS
Google Scholar
Gao J, Hou H, Zhai Y, Woodward A, Vardoulakis S, Kovats S, et al. Greenhouse gas emissions reduction in different economic sectors: mitigation measures, health co-benefits, knowledge gaps, and policy implications. Environ Pollut. 2018;240:683–98.
Article
CAS
PubMed
Google Scholar
Dellomonaco C, Fava F, Gonzalez R. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact. 2010;9(3):1–15.
Google Scholar
Solomon BD. Biofuels and sustainability. Ann N Y Acad Sci. 2010;1185(1):119–34.
Article
PubMed
Google Scholar
Tao L, Tan ECD, McCormick R, Zhang M, Aden A, He X, et al. Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels, Bioprod Biorefin. 2014;8(1):30–48.
Article
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86–9.
Article
CAS
PubMed
Google Scholar
Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, et al. Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng. 2012;109(10):2437–59.
Article
CAS
PubMed
Google Scholar
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008;10(6):305–11.
Article
CAS
PubMed
Google Scholar
Atsumi S, Wu T-Y, Eckl E-M, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol. 2010;85(3):651–7.
Article
CAS
PubMed
Google Scholar
Desai SH, Rabinovitch-Deere CA, Fan ZL, Atsumi S. Isobutanol production from cellobionic acid in Escherichia coli. Microb Cell Fact. 2015;14(52):1–10.
CAS
Google Scholar
Smith KM, Cho K-M, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol. 2010;87(3):1045–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blombach B, Riester T, Wieschalka S, Ziert C, Youn J-W, Wendisch VF, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77(10):3300–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blombach B, Eikmanns BJ. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs. 2011;2(6):346–50.
Article
PubMed
PubMed Central
Google Scholar
Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng. 2012;35(9):1467–75.
Article
CAS
PubMed
Google Scholar
Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol. 2013;31(4):335–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact. 2013;12(11):1–11.
Google Scholar
Qi H, Li S, Zhao S, Huang D, Xia M, Wen J. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS ONE. 2014;9(4):e93815.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol. 2011;91(3):577–89.
Article
CAS
PubMed
Google Scholar
Higashide W, Li Y, Yang Y, Liao JC. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol. 2012;77(8):2727–33.
Article
CAS
Google Scholar
Lin PP, Mi L, Moriok AH, Yoshino MM, Konishi S, Xu SC, et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng. 2015;31:44–52.
Article
CAS
PubMed
Google Scholar
Felpeto-Santero C, Rojas A, Tortajada M, Galan B, Ramon D, Garcia JL. Engineering alternative isobutanol production platforms. AMB Express. 2015;5(32):1–9.
CAS
Google Scholar
Trinh CT, Li J, Blanch HW, Clark DS. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol. 2011;77(14):4894–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Qi H, Wang C, Wen J. Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli. Biotechnol Biofuels. 2015;8(1):108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Acedos MG, Yustos P, Santos VE, Garcia-Ochoa F. Carbon flux distribution in the metabolism of Shimwellia blattae (p424IbPSO) for isobutanol production from glucose as function of oxygen availability. J Chem Technol Biotechnol. 2018.
Wang Y, San K-Y, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol. 2013;24(6):994–9.
Article
CAS
PubMed
Google Scholar
Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng. 2011;13(3):345–52.
Article
CAS
PubMed
Google Scholar
Liu X, Bastian S, Snow CD, Brustad EM, Saleski TE, Xu J-H, et al. Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol. J Biotechnol. 2013;164(2):188–95.
Article
CAS
Google Scholar
Wu W, Tran-Gyamfi MB, Jaryenneh JD, Davisa RW. Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation. Algal Res. 2016;19:162–7.
Article
Google Scholar
Weckbecker A, Hummel W. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett. 2004;26(22):1739–44.
Article
CAS
PubMed
Google Scholar
Acedos MG, Ramon A, De la Morena S, Santos VE, Garcia-Ochoa F. Isobutanol production by a recombinant biocatalyst Shimwellia blattae (p424IbPSO): study of the operational conditions. Biochem Eng J. 2018;133:21–7.
Article
CAS
Google Scholar
Heinrich D, Andreessen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbuechel A. From waste to plastic: synthesis of poly(3-Hydroxypropionate) in Shimwellia blattae. Appl Environ Microbiol. 2013;79(12):3582–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez A, Santos VE, Gomez E, Garcia-Ochoa F. Influence of fluid dynamic conditions on 1,3-propanediol production from glycerol by Shimwellia blattae: carbon flux and cell response. J Chem Technol Biotechnol. 2017;92(8):2050–9.
Article
CAS
Google Scholar
Rodriguez A, Wojtusik M, Ripoll V, Santos VE, Garcia-Ochoa F. 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: Operational conditions and kinetics in batch cultivations. Biores Technol. 2016;200(Supplement C):830–7.
Article
CAS
Google Scholar
Urano N, Fujii M, Kaino H, Matsubara M, Kataoka M. Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae. Appl Microbiol Biotechnol. 2015;99(4):2001–8.
Article
CAS
PubMed
Google Scholar
Jung HM, Han JH, Oh MK. Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli. Microb Biotechnol. 2020. https://doi.org/10.1111/1751-7915.13669.
Article
PubMed
PubMed Central
Google Scholar
Sherkhanov S, Korman TP, Chan S, Faham S, Liu H, Sawaya MR, Hsu W, Vikram E, Cheng T, Bowie JU. Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun. 2020;11:4292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabus A, Georgi T, Wendisch VF, Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol. 2007;75(1):47–53.
Article
CAS
PubMed
Google Scholar
Liu S, Skory C, Liang X, Mills D, Qureshi N. Increased ethanol tolerance associated with the pntAB locus of Oenococcus oeni and Lactobacillus buchneri. J Ind Microbiol Biotechnol. 2019;46(11):1547–56.
Article
CAS
PubMed
Google Scholar
Thakker C, Martínez I, Li W, San K-Y, Bennett GN. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol. 2015;42(3):403–22.
Article
CAS
PubMed
Google Scholar
Acedos MG, Hermida A, Gómez E, Santos VE, García-Ochoa F. Effects of fluid-dynamic conditions in Shimwellia blattae (p424IbPSO) cultures in stirred tank bioreactors: hydrodynamic stress and change of metabolic routes by oxygen availability. Biochem Eng J. 2019;149:107238.
Article
CAS
Google Scholar
Acedos MG, Santos VE, García-Ochoa F. Resting cells isobutanol production by Shimwellia blattae (p424IbPSO): influence of growth culture conditions. Biotechnol Prog. 2018; Accepted
Shi A, Zhu X, Lu J, Zhang X, Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.
Article
CAS
PubMed
Google Scholar
Rusell SJ. Molecular cloning: a laboratory manual 3 (NY). Cold Spring Harbor Laboratory: Cold Spring Harbor; 2001.
Google Scholar
Wirth R, Friesenegger A, Fiedler S (1989) Transformation of various species of gram-negative bacteria belonging to 11 different genera byelectroporation. Mol Gen Genet 216:175–177. https://doi.org/10.1007/BF00332248
Article
CAS
PubMed
Google Scholar
Martínez-Pérez O, Moreno-Ruiz E, Floriano B, Santero E. Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons. J Bacteriol. 2004;186(18):6101–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de LasHeras A, et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 2013;41(D1):D666–75.
Article
CAS
PubMed
Google Scholar