Gong Z, Nielsen J, Zhou YJ. Engineering robustness of microbial cell factories. Biotechnol J. 2017;12:1700014.
Article
Google Scholar
Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164(6):1185–97.
Article
CAS
Google Scholar
Cao X, Yang S, Cao C, Zhou YJ. Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synth Syst Biotechnol. 2020;5(3):179–86.
Article
Google Scholar
Ozsezen S, Papagiannakis A, Chen H, Niebel B, Milias-Argeitis A, Heinemann M. Inference of the high-level interaction topology between the metabolic and cell-cycle oscillators from single-cell dynamics. Cell Syst. 2019;9(4):354–65.
Article
CAS
Google Scholar
Krishnan A, McNeil BA, Stuart DT. Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations. Front Bioeng Biotechnol. 2020;8: 610936.
Article
Google Scholar
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng. 2020;58:35–46.
Article
CAS
Google Scholar
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev. 2014;38(5):892–915.
Article
CAS
Google Scholar
d’Espaux L, Ghosh A, Runguphan W, Wehrs M, Xu F, Konzock O, et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab Eng. 2017;42:115–25.
Article
Google Scholar
Fillet S, Gibert J, Suárez B, Lara A, Ronchel C, Adrio JL. Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol. 2015;42(11):1463–72.
Article
CAS
Google Scholar
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun. 2016;7:11709.
Article
CAS
Google Scholar
Nambu-Nishida Y, Sakihama Y, Ishii J, Hasunuma T, Kondo A. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation. J Biosci Bioeng. 2018;125(1):76–86.
Article
CAS
Google Scholar
van der Klei IJ, Veenhuis M. Yeast peroxisomes: Function and biogenesis of a versatile cell organelle. Trends Microbiol. 1997;5(12):502–9.
Article
Google Scholar
Lefevre SD, van Roermund CW, Wanders RJA, Veenhuis M, van der Klei IJ. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell. 2013;12(5):784–93.
Article
CAS
Google Scholar
Sheng J, Stevens J, Feng X. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci Rep. 2016;6(1):26884.
Article
CAS
Google Scholar
Vizeacoumar FJ, Torres-Guzman JC, Tam YYC, Aitchison JD, Rachubinski RA. YHR150w and YDR479c encode peroxisomal integral membrane proteins involved in the regulation of peroxisome number, size, and distribution in Saccharomyces cerevisiae. J Cell Biol. 2003;161(2):321–32.
Article
CAS
Google Scholar
Teixeira PG, Ferreira R, Zhou YJ, Siewers V, Nielsen J. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16(1):45.
Article
Google Scholar
Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energy. 2014;115:226–32.
Article
Google Scholar
Yu W, Cao X, Gao J, Zhou YJ. Overproduction of 3-hydroxypropionate in a super yeast chassis. Bioresour Technol. 2022;361: 127690.
Article
CAS
Google Scholar
Yu T, Zhou YJ, Huang M, Liu Q, Pereira R, David F, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell. 2018;174(6):1549–58.
Article
CAS
Google Scholar
Cao C, Cao X, Yu W, Chen Y, Lin X, Zhu B, et al. Global metabolic rewiring of yeast enables overproduction of sesquiterpene (+)-valencene. J Agric Food Chem. 2022;70(23):7180–7.
Article
CAS
Google Scholar
Cao X, Yu W, Chen Y, Yang S, Zhao ZK, Nielsen J, et al. Engineering yeast for high-level production of diterpenoid sclareol. Metab Eng. 2023;75:19–28.
Article
CAS
Google Scholar
Zhou YJ, Buijs NA, Zhu Z, Gómez DO, Boonsombuti A, Siewers V, et al. Harnessing yeast peroxisomes for biosynthesis of fatty-Acid-derived biofuels and chemicals with relieved side-pathway competition. J Am Chem Soc. 2016;138(47):15368–77.
Article
CAS
Google Scholar
Fritz R, Bol J, Hebling U, Angermüller S, Völkl A, Fahimi HD, et al. Compartment-dependent management of H2O2 by peroxisomes. Free Radical Biol Med. 2007;42(7):1119–29.
Article
CAS
Google Scholar
Zampar GG, Kummel A, Ewald J, Jol S, Niebel B, Picotti P, et al. Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol. 2013;9:651.
Article
Google Scholar
Hartline CJ, Schmitz AC, Han Y, Zhang F. Dynamic control in metabolic engineering: theories, tools, and applications. Metab Eng. 2021;63:126–40.
Article
CAS
Google Scholar
Zhu Y, Li Y, Xu Y, Zhang J, Ma L, Qi Q, et al. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering. Metab Eng. 2021;68:142–51.
Article
CAS
Google Scholar
Marsafari M, Ma J, Koffas M, Xu P. Genetically-encoded biosensors for analyzing and controlling cellular process in yeast. Curr Opin Biotechnol. 2020;64:175–82.
Article
CAS
Google Scholar
Li M, Zhou P, Chen M, Yu H, Ye L. Spatiotemporal regulation of astaxanthin synthesis in Saccharomyces cerevisiae. ACS Synth Biol. 2022;11(8):2636–49.
Article
Google Scholar
Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng. 2011;13(5):474–81.
Article
CAS
Google Scholar
Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol. 2013;31(4):335–41.
Article
CAS
Google Scholar
Liu GS, Li T, Zhou W, Jiang M, Tao XY, Liu M, et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metab Eng. 2020;57:151–61.
Article
Google Scholar
Xu P, Qiao KJ, Ahn WS, Stephanopoulos G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci U S A. 2016;113(39):10848–53.
Article
CAS
Google Scholar
Gao J, Zhou YJ. Repurposing peroxisomes for microbial synthesis for biomolecules. Methods Enzymol. 2019;617:83–111.
Article
CAS
Google Scholar
Saraya R, Veenhuis M, van der Klei IJ. Peroxisomes as dynamic organelles: peroxisome abundance in yeast. FEBS J. 2010;277(16):3279–88.
Article
CAS
Google Scholar
Platta HW, Erdmann R. Peroxisomal dynamics. Trends Cell Biol. 2007;17(10):474–84.
Article
CAS
Google Scholar
Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol. 2012;30(4):354–9.
Article
CAS
Google Scholar
Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A. 2014;111(31):11299–304.
Article
CAS
Google Scholar
Schultz JC, Mishra S, Gaither E, Mejia A, Dinh H, Maranas C, et al. Metabolic engineering of Rhodotorula toruloides IFO0880 improves C16 and C18 fatty alcohol production from synthetic media. Microb Cell Fact. 2022;21(1):26.
Article
CAS
Google Scholar
Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc. 2012;134(6):3234–41.
Article
CAS
Google Scholar
Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501–17.
Article
CAS
Google Scholar
Yang S, Cao X, Yu W, Li S, Zhou YJ. Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2020;104(7):3037–47.
Article
CAS
Google Scholar
Mikkelsen MD, Buron LD, Salomonsen B, Olsen CE, Hansen BG, Mortensen UH, et al. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng. 2012;14(2):104–11.
Article
CAS
Google Scholar
Kong S, Yu W, Gao N, Zhai X, Zhou YJ. Expanding the neutral sites for integrated gene
expression in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2022; 369(1): fnac081.
Article
Google Scholar
Duan X, Ma X, Li S, Zhou YJ. Free fatty acids promote transformation efficiency of yeast. FEMS Yeast Res. 2019;19(7):069.
Article
Google Scholar
Yu W, Gao J, Zhai X, Zhou YJ. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha. Synth Syst Biotechnol. 2021;6(2):63–8.
Article
Google Scholar
Zhai X, Ji L, Gao J, Zhou YJ. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha. Appl Microbiol Biotechnol. 2021;105(23):8761–9.
Article
CAS
Google Scholar
Blazeck J, Garg R, Reed B, Alper HS. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng. 2012;109(11):2884–95.
Article
CAS
Google Scholar