Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002.
Article
CAS
Google Scholar
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013, 127: 500-507.
Article
CAS
Google Scholar
CAZy database. http://www.cazy.org,
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acid Res. 2009, 37: D233-238. 10.1093/nar/gkn663.
Article
CAS
Google Scholar
Kristensen JB, Felby C, Jorgensen H: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2009, 2: 11-10.1186/1754-6834-2-11.
Article
Google Scholar
Andric P, Meyer AS, Jensen PA, Dam-johansen K: Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv. 2010, 28: 407-425.
Article
CAS
Google Scholar
Öhgren K, Vehmaanperä J, Siika-aho M, Galbe M, Viikari L, Zacchi G: High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb Technol. 2007, 40: 607-613. 10.1016/j.enzmictec.2006.05.014.
Article
Google Scholar
Viikari L, Alapuranen M, Puranen T, Vehamaanperä J, Siika-aho M: Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Engin/Biotechnol. 2007, 108: 121-145. 10.1007/10_2007_065.
Article
CAS
Google Scholar
Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH: A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA. 2009, 106: 5610-5615. 10.1073/pnas.0901417106.
Article
CAS
Google Scholar
Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, Maximenko V, Gregg D, Sinitsyn A, Saddler J: Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme Microb Technol. 2005, 37: 175-184. 10.1016/j.enzmictec.2005.01.039.
Article
CAS
Google Scholar
Berlin A, Maximenko V, Gilkes N, Saddler J: Optimization of enzyme complexes for lignocelluloses hydrolysis. Biotechnol Bioeng. 2007, 97: 287-296. 10.1002/bit.21238.
Article
CAS
Google Scholar
O`Dwyer JP, Zhu L, Granda CB, Holtzapple MT: Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 model. Bioresour Technol. 2007, 98: 2969-2977. 10.1016/j.biortech.2006.10.014.
Article
CAS
Google Scholar
Kumar R, Wyman CE: Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng. 2009, 102: 457-467. 10.1002/bit.22068.
Article
CAS
Google Scholar
Howell JA, Stuck JD: Kinetics of Solka Floc cellulose hydrolysis by Trichoderma viride cellulase. Biotechnol Bioeng. 1975, 17: 873-893. 10.1002/bit.260170608.
Article
CAS
Google Scholar
Ryu DDY, Lee SB: Enzymatic hydrolysis of cellulose: determination of kinetic parameters. Chem Eng Commun. 1986, 45: 119-134. 10.1080/00986448608911377.
Article
CAS
Google Scholar
Kadam KL, Rydholm EC, McMillan JD: Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog. 2004, 20: 698-705. 10.1021/bp034316x.
Article
CAS
Google Scholar
Bezerra RMF, Dias AA: Enzymatic kinetic of cellulose hydrolysis. Inhibition by ethanol and cellobiose. Appl Biochem Biotechnol. 2005, 126: 49-59. 10.1007/s12010-005-0005-5.
Article
CAS
Google Scholar
Bezerra RMF, Dias AA, Fraga I, Pereira AN: Cellulose hydrolysis by cellobiohydrolase Cel7A shows mixed hyperbolic product inhibition. Appl Biochem Biotechnol. 2011, 165: 178-189. 10.1007/s12010-011-9242-y.
Article
CAS
Google Scholar
Levine SE, Fox JM, Clark DS, Blanch HW: A mechanistic model for rational design of optimal cellulase mixtures. Biotechnol Bioeng. 2011, 108: 2561-2570. 10.1002/bit.23249.
Article
CAS
Google Scholar
Khodaverdi M, Jeihanipour A, Karimi K, Taherzadeh MJ: Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J Ind Microbiol Biotechnol. 2012, 39: 429-438. 10.1007/s10295-011-1048-y.
Article
CAS
Google Scholar
Gusakov AV, Sinitsyn AP: A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzyme/substrate ratio, and β-glucosidase activity on the inhibition pattern. Biotechnol Bioeng. 1992, 40: 663-671. 10.1002/bit.260400604.
Article
CAS
Google Scholar
Holtzapple M, Cognata M, Shu Y, Hendrickson C: Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng. 1990, 36: 275-287. 10.1002/bit.260360310.
Article
CAS
Google Scholar
Andric P, Meyer AS, Jensen PA, Dam-johansen K: Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv. 2010, 28: 308-324. 10.1016/j.biotechadv.2010.01.003.
Article
CAS
Google Scholar
Du FY, Wolger E, Wallace L, Liu A, Kaper T, Kelemen B: Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Appl Biochem Biotechnol. 2010, 161: 313-317. 10.1007/s12010-009-8796-4.
Article
CAS
Google Scholar
Maurer SA, Bedbrook CN, Radke CJ: Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry. Ind Eng Chem Res. 2012, 51: 11389-11400. 10.1021/ie3008538.
Article
CAS
Google Scholar
Suchy M, Linder MB, Tammelin T, Campbell JM, Vuorinen T, Kontturi E: Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring. Langmuir. 2011, 27: 8819-8828. 10.1021/la2014418.
Article
CAS
Google Scholar
Karim N, Okada H, Kidokoro S: Calorimetric evaluation of the activity and the mechanism of cellulases for the hydrolysis of cello-oligosaccharides accompanied by the mutarotation reaction of the hydrolyzed products. Thermochim Acta. 2005, 431: 9-20. 10.1016/j.tca.2005.01.025.
Article
CAS
Google Scholar
Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sorensen TH, Anderson L, Borch K, Westh P: Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol. 2013, 52: 163-169. 10.1016/j.enzmictec.2013.01.002.
Article
CAS
Google Scholar
Murphy L, Baumann MJ, Borch K, Sweeney M, Westh P: An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Anal Biochem. 2010, 404: 140-148. 10.1016/j.ab.2010.04.020.
Article
CAS
Google Scholar
van Tilbeurgh H, Claeyssens M: Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett. 1985, 187: 283-288. 10.1016/0014-5793(85)81260-6.
Article
CAS
Google Scholar
Gruno M, Väljamäe P, Pettersson G, Johansson G: Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng. 2004, 86: 503-511. 10.1002/bit.10838.
Article
CAS
Google Scholar
Jalak J, Kurašin M, Teugjas H, Väljamäe P: Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem. 2012, 287: 28802-28815. 10.1074/jbc.M112.381624.
Article
CAS
Google Scholar
Baumann MJ, Borch K, Westh P: Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnol Biofuels. 2011, 4: 45-10.1186/1754-6834-4-45.
Article
CAS
Google Scholar
Vehamaanperä J, Alapuranen M, Puranen T, Siika-aho M, Kallio J, Hooman S, Voutilainen S, Halonen T, Viikari L: Treatment of cellulosic material and enzymes useful therein. Patent application FI 20051318, WO2007071818. Priority 22.12.2055
Zhang J, Tuomainen P, Siika-aho M, Viikari L: Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol. 2011, 102: 9090-9095. 10.1016/j.biortech.2011.06.085.
Article
CAS
Google Scholar
Szijarto N, Horan M, Zhang J, Puranen T, Siika-aho M, Viikari L: Thermostable endoglucanases in liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuels. 2011, 4: 2-10.1186/1754-6834-4-2.
Article
CAS
Google Scholar
Maijala P, Mäkinen M, Galkin S, Fagerstedt K, Härkäsalmi T, Viikari L: Enzymatic modification of flaxseed fibers. J Agric Food Chem. 2012, 60: 10903-10909. 10.1021/jf303965k.
Article
CAS
Google Scholar
McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW: Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels. 2012, 5: 54-10.1186/1754-6834-5-54.
Article
CAS
Google Scholar
Skovgaard PA, Jorgensen H: Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes. J Ind Microbiol Biotechnol. 2013, 40: 447-456. 10.1007/s10295-013-1248-8.
Article
CAS
Google Scholar
Jalak J, Väljamäe P: Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng. 2010, 106: 871-883. 10.1002/bit.22779.
Article
CAS
Google Scholar
Murphy L, Cruys-Bagger N, Damgaard HD, Baumann MJ, Olsen SN, Borch K, Lassen SF, Sweeney M, Tatsumi H, Westh P: Origin of initial burst in activity for Trichoderma reesei endoglucanases hydrolyzing insoluble cellulose. J Biol Chem. 2012, 287: 1252-1260. 10.1074/jbc.M111.276485.
Article
CAS
Google Scholar
Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P: Pre-steady state kinetics for the hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem. 2012, 287: 18451-18458. 10.1074/jbc.M111.334946.
Article
CAS
Google Scholar
Teeri TT: Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 1997, 15: 160-167. 10.1016/S0167-7799(97)01032-9.
Article
Google Scholar
Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikri L, Vehmaanpera J, Koivula A: Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng. 2008, 101: 515-528. 10.1002/bit.21940.
Article
CAS
Google Scholar
Santa-Maria M, Jeoh T: Molecular scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules. 2010, 11: 2000-2007. 10.1021/bm100366h.
Article
CAS
Google Scholar
Quirk A, Lipkowski J, Vandenende C, Cockburn D, Clarke AJ, Dutcher JR, Roscoe SG: Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy. Langmuir. 2010, 26: 5007-5013. 10.1021/la9037028.
Article
CAS
Google Scholar
Hidayat BJ, Felby C, Johansen KS, Thygesen LG: Cellulose is not just cellulose: a review of dislocations as reactive sites in enzymatic hydrolysis of cellulose microfibrils. Cellulose. 2012, 19: 1481-1493. 10.1007/s10570-012-9740-2.
Article
CAS
Google Scholar
Samejima M, Sugiyama J, Igarashi K, Eriksson KEL: Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res. 1998, 305: 281-288.
Article
Google Scholar
Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G: Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem. 1999, 266: 327-334. 10.1046/j.1432-1327.1999.00853.x.
Article
Google Scholar
Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF: Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol. 2011, 22: 231-238. 10.1016/j.copbio.2010.11.005.
Article
CAS
Google Scholar
Vonhoff S, Piens K, Pipelier M, Braet C, Claeyssens M, Vasella A: Inhibition of cellobiohydrolases from Trichoderma reesei. Synthesis and evaluation of some glucose-, cellobiose-, and cellotriose-derived hydroximolactams and imidazoles. Helv Chim Acta. 1999, 82: 963-980. 10.1002/(SICI)1522-2675(19990707)82:7<963::AID-HLCA963>3.0.CO;2-V.
Article
CAS
Google Scholar
Von Ossowski I, Ståhlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S, Zhao Y, Driguez H, Cleayssens M, Sinnott ML, Teeri TT: Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. J Mol Biol. 2003, 333: 817-829. 10.1016/S0022-2836(03)00881-7.
Article
CAS
Google Scholar
Textor LC, Colussi F, Silveira RL, Serpa V, de Mello BL, Muniz JRC, Squina FM, Pereira N, Skaf MS, Polikarpov I: Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity. FEBS J. 2013, 280: 56-69. 10.1111/febs.12049.
Article
CAS
Google Scholar
Mulakala C, Reilly PJ: Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study. Proteins Struct Funct Bioinform. 2005, 60: 598-605. 10.1002/prot.20547.
Article
CAS
Google Scholar
Bu L, Beckham GT, Shirts MR, Nimlos MR, Adney WS, Himmel ME, Crowley MF: Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods. J Biol Chem. 2011, 286: 18161-18169. 10.1074/jbc.M110.212076.
Article
CAS
Google Scholar
Herner ML, Melnick MS, Rabinovich ML: Enhancement of the affinity of cellobiohydrolase I and its catalytic domain to cellulose in the presence of the reaction product – cellobiose. Biochem Mosc. 1999, 64: 1204-1213.
Google Scholar
Palonen H, Tenkanen M, Linder M: Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol. 1999, 65: 5229-5233.
CAS
Google Scholar
Zhang YHP, Himmel ME, Mielenz JR: Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006, 24: 452-481. 10.1016/j.biotechadv.2006.03.003.
Article
CAS
Google Scholar
Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Ståhlberg J: Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J. 2013, 280: 184-198. 10.1111/febs.12060.
Article
CAS
Google Scholar
van Tilbeurgh H, Pettersson G, Bhikabhai R, DeBoeck H, Claeyssens M: Studies of the cellulolytic system of Trichoderma reesei QM9414. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-β-glucan cellobiohydrolase II. Eur J Biochem. 1985, 148: 329-334. 10.1111/j.1432-1033.1985.tb08843.x.
Article
CAS
Google Scholar
van Tilbeurgh H, Loontiens FG, Engelborgs Y, Claeyssens M: Studies of the cellulolytic system of Trichoderma reesei QM9414. Binding of small ligands to the 1,4-β-glucan cellobiohydrolase II and influence of glucose to their affinity. Eur J Biochem. 1989, 184: 553-559. 10.1111/j.1432-1033.1989.tb15049.x.
Article
CAS
Google Scholar
Teleman A, Koivula A, Reinikainen T, Valkeajärvi A, Teeri TT, Drakenberg T, Teleman O: Progress-curve analysis shows that glucose inhibits the cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei. Eur J Biochem. 1995, 231: 250-258. 10.1111/j.1432-1033.1995.tb20694.x.
Article
CAS
Google Scholar
Thompson AJ, Heu T, Shaghasi T, Benyamino R, Jones A, Friis EP, Wilson KS, Davies GJ: Structure of the catalytic core module of the Chaetomium thermophilum family GH6 cellobiohydrolase Cel6A. Acta Crystallogr D: Biol Crystallogr. 2012, 68: 875-882. 10.1107/S0907444912016496.
Article
CAS
Google Scholar
Chundawat SPS, Bellesia G, Uppugundla N, Sousa LC, Gao D, Cheh AM, Agarwal U, Bianchetti C, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE: Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc. 2011, 133: 11163-11174. 10.1021/ja2011115.
Article
CAS
Google Scholar
Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F: Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol. 2002, 99: 63-78. 10.1016/S0168-1656(02)00156-6.
Article
CAS
Google Scholar
Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA: β-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett. 2004, 240: 137-143. 10.1016/j.femsle.2004.09.021.
Article
CAS
Google Scholar
Uchiyama T, Miyazaki K, Yaoi K: Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem. 2013, 288: 18325-18334. 10.1074/jbc.M113.471342.
Article
CAS
Google Scholar
Zemin F, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y: Cloning and characterization of β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol. 2010, 20: 1351-1358. 10.4014/jmb.1003.03011.
Article
Google Scholar
Pei J, Pang Q, Zhao L, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels. 2012, 5: 31-10.1186/1754-6834-5-31.
Article
CAS
Google Scholar
Mai Z, Yang J, Tian X, Li J, Zhang S: Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from marine Streptomycete. Appl Biochem Biotechnol. 2013, 169: 1512-1522. 10.1007/s12010-012-0080-3.
Article
CAS
Google Scholar
Velleste R, Teugjas H, Väljamäe P: Reducing end-specific fluorescence labelled celluloses for cellulase mode of action. Cellulose. 2010, 17: 125-138. 10.1007/s10570-009-9356-3.
Article
CAS
Google Scholar
Bhikhabhai R, Johansson G, Pettersson G: Isolation of cellulolytic enzymes from Trichoderma reesei QM 9414. J Appl Biochem. 1984, 6: 336-345.
CAS
Google Scholar
Kipper K, Väljamäe P, Johansson G: Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ”burst” kinetics on fuorescent polymeric model substrates. Biochem J. 2005, 385: 527-535. 10.1042/BJ20041144.
Article
CAS
Google Scholar
Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Ståhlberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JKC: EG III a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene. 1988, 63: 11-21. 10.1016/0378-1119(88)90541-0.
Article
CAS
Google Scholar
Håkansson U, Fägerstam L, Pettersson G, Andersson L: Purification and characterization of a low molecular weight 1,4-beta-glucan glucanohydrolase from the cellulolytic fungus Trichoderma reesei QM9414. Biochim Biophys Acta. 1978, 524: 385-392. 10.1016/0005-2744(78)90175-4.
Article
Google Scholar
Sipos B, Benkö Z, Reczey K, Viikari L, Siika-aho M: Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol. 2010, 161: 347-364. 10.1007/s12010-009-8824-4.
Article
CAS
Google Scholar