Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002.
Article
CAS
Google Scholar
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH: Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012, 5: 45-10.1186/1754-6834-5-45.
Article
CAS
Google Scholar
Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013, 127: 500-507.
Article
CAS
Google Scholar
CAZy database. http://www.cazy.org,
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acid Res. 2009, 37: D233-D238. 10.1093/nar/gkn663.
Article
CAS
Google Scholar
Del Pozo MV, Fernandez-Arrojo L, Gil-Martinez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA, Golyshina OV, Newbold CJ, Polaina J, Ferrer M, Golyshin PN: Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels. 2012, 5: 73-10.1186/1754-6834-5-73.
Article
CAS
Google Scholar
Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M: Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1 → 3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydr Res. 2004, 339: 2851-2857. 10.1016/j.carres.2004.09.019.
Article
CAS
Google Scholar
Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P: A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol. 2013, 97: 159-169. 10.1007/s00253-012-3875-9.
Article
CAS
Google Scholar
Bhatia Y, Mishra S, Bisaria VS: Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol. 2002, 22 (4): 375-407. 10.1080/07388550290789568.
Article
CAS
Google Scholar
Andric P, Meyer AS, Jensen PA, Dam-johansen K: Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv. 2010, 28: 308-324. 10.1016/j.biotechadv.2010.01.003.
Article
CAS
Google Scholar
Andric P, Meyer AS, Jensen PA, Dam-johansen K: Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis: II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv. 2010, 28: 407-425.
Article
CAS
Google Scholar
Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD: Cellodextrin transport in yeast for improved biofuel production. Science. 2010, 330: 84-86. 10.1126/science.1192838.
Article
CAS
Google Scholar
Kristensen JB, Felby C, Jorgensen H: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels. 2009, 2: 11-10.1186/1754-6834-2-11.
Article
Google Scholar
Öhgren K, Vehmaanperä J, Siika-aho M, Galbe M, Viikari L, Zacchi G: High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb Technol. 2007, 40: 607-613. 10.1016/j.enzmictec.2006.05.014.
Article
Google Scholar
Vehamaanperä J, Alapuranen M, Puranen T, Siika-aho M, Kallio J, Hooman S, Voutilainen S, Halonen T, Viikari L: Treatment of cellulosic material and enzymes useful therein. Patent application FI 20051318, WO2007071818. Priority 22.12.2055
McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW: Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels. 2012, 5: 54-10.1186/1754-6834-5-54.
Article
CAS
Google Scholar
Seidle HF, Huber RE: Transglucosidic reactions of the Aspergillus niger family 3 β-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch Biochem Biophys. 2005, 436: 254-264. 10.1016/j.abb.2005.02.017.
Article
CAS
Google Scholar
Seidle HF, McKenzie K, Marten I, Shoseyov O, Huber RE: Trp-262 is a key residue for the hydrolytic and transglucosidic reactivity of the Aspergillus niger family 3 β-glucosidase: substitution results in enzymes with mainly transglucosidic activity. Arch Biochem Biophys. 2005, 444: 66-75. 10.1016/j.abb.2005.09.013.
Article
CAS
Google Scholar
Calsavara LPV, De Moraes FF, Zanin GM: Modeling cellobiose hydrolysis with integrated kinetic models. Appl Biochem Biotechnol. 1999, 77–79: 789-806.
Article
Google Scholar
Krogh KBRM, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L: Characterization and kinetic analysis of thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol. 2009, 86 (1): 143-154.
Article
Google Scholar
Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P: A comparative study of activity and apparent inhibition of fungal β-glucosidases. Biotechnol Bioeng. 2010, 107: 943-952. 10.1002/bit.22885.
Article
CAS
Google Scholar
Langston J, Sheehy N, Xu F: Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta. 2006, 1764: 972-978. 10.1016/j.bbapap.2006.03.009.
Article
CAS
Google Scholar
Chauve M, Mathis H, Huc D, Casanave D, Monot F, Ferreira NL: Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels. 2010, 3: 3-10.1186/1754-6834-3-3.
Article
Google Scholar
Ng IS, Tsai SW, Ju YM, Yu SM, Ho THD: Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresour Technol. 2011, 102: 6073-6081. 10.1016/j.biortech.2010.12.110.
Article
CAS
Google Scholar
Park A-R, Hong JH, Kim J-J, Yoon J-J: Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology. 2012, 40 (3): 173-180. 10.5941/MYCO.2012.40.3.173.
Article
CAS
Google Scholar
Teugjas H, Väljamäe P: Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnol Biofuels. 2013
Google Scholar
Hong J, Tamaki H, Kumagai H: Unusual hydrophobic linker region of β-glucosidase (BGLII) from Thermoascus aurantiacus is required for hyper-activation by organic solvents. Appl Microbiol Biotechnol. 2006, 73: 80-88. 10.1007/s00253-006-0428-0.
Article
CAS
Google Scholar
Yan TR, Lin CL: Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotech Biochem. 1997, 61: 965-970. 10.1271/bbb.61.965.
Article
CAS
Google Scholar
Pei J, Pang Q, Zhao L, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels. 2012, 5: 31-10.1186/1754-6834-5-31.
Article
CAS
Google Scholar
Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P: Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol. 1998, 64: 3607-3614.
CAS
Google Scholar
Saha BC, Bothast RJ: Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata. Appl Environ Microbiol. 1996, 62: 3165-3170.
CAS
Google Scholar
Sonia KG, Chadha BS, Badhan AK, Saini HS, Bhat MK: Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World J Microbiol Biotechnol. 2008, 24: 599-604. 10.1007/s11274-007-9512-6.
Article
CAS
Google Scholar
Waeonukul R, Kosugi A, Prawitwong P, Deng L, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Saito M, Mori Y: Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase. Bioresour Technol. 2013, 130: 424-430.
Article
CAS
Google Scholar
Zorov IN, Gusakov AV, Baraznenok VA, Bekkarevich AO, Okunev ON, Sinitsyn AP, Kondrateva EG: Isolation and properties of cellobiase from Penicillium verruculosum. Appl Biochem Microbiol. 2001, 37: 587-592. 10.1023/A:1012351017032.
Article
CAS
Google Scholar
Lymar ES, Li B, Renganathan V: Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium. Appl Environ Microbiol. 1995, 61: 2976-2980.
CAS
Google Scholar
Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P: Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. Peerj. 2013, 1: e46-
Article
Google Scholar
Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeum J, Bhat MK: Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J. 2001, 353: 117-127.
Article
CAS
Google Scholar
Schmid G, Wandrey C: Characterization of a cellodextrin glucohydrolase with soluble oligomeric substrates: experimental results and modeling of concentration-time-course data. Biotechnol Bioeng. 1989, 33: 1445-1460. 10.1002/bit.260331112.
Article
CAS
Google Scholar
Yoon JJ, Kim KY, Cha CJ: Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol. 2008, 46: 51-55. 10.1007/s12275-007-0230-4.
Article
CAS
Google Scholar
Korotkova OG, Semenova MV, Morozova VV, Zorov IN, Sokolova LM, Bubnova TM, Okunev ON, Sinitsyn AP: Isolation and properties of fungal β-glucosidases. Biochem Mosc. 2009, 74: 569-577. 10.1134/S0006297909050137.
Article
CAS
Google Scholar
Chirico WJ, Brown RD: Purification and characterization of a β-glucosidase from Trichoderma reesei. Eur J Biochem. 1987, 165: 333-341. 10.1111/j.1432-1033.1987.tb11446.x.
Article
CAS
Google Scholar
Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK: Purification and characterization of an extracellular β-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem. 1994, 224: 379-385. 10.1111/j.1432-1033.1994.00379.x.
Article
CAS
Google Scholar
Seidle HF, Marten I, Shoseyov O, Huber RE: Physical and kinetic properties of the family 3 β-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J. 2004, 23: 11-23.
Article
CAS
Google Scholar
Yan TR, Lin YH, Lin CL: Purification and characterization of an extracellular β-glucosidase II with high hydrolysis and transglucosylation activities from Aspergillus niger. J Agric Food Chem. 1998, 46: 431-437. 10.1021/jf9702499.
Article
CAS
Google Scholar
Decker CH, Visser J, Schreier P: β-glucosidase multiplicity from Aspergillus tubingensis CBS 943.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol. 2001, 55: 157-163. 10.1007/s002530000462.
Article
CAS
Google Scholar
Decker CH, Visser J, Schreier P: β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem. 2000, 48: 4929-4936. 10.1021/jf000434d.
Article
CAS
Google Scholar
Figueira JA, Sato HH, Fernandes P: Establishing the feasibility of using β-glucosidase entrapped in Lentikas and in sol–gel supports for cellobiose hydrolysis. J Agric Food Chem. 2013, 61: 626-634. 10.1021/jf304594s.
Article
CAS
Google Scholar
Harnipcharnchai P, Champreda V, Sornlake W, Eurwilaichitr L: A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Prot Express Purif. 2009, 67: 61-69. 10.1016/j.pep.2008.05.022.
Article
Google Scholar
Wierzbicka-Wos A, Bartasun B, Cieslinski H, Kur J: Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnol. 2013, 13: 22-10.1186/1472-6750-13-22.
Article
CAS
Google Scholar
Perezpons JA, Cayetano A, Rebordosa X, Lloberas J, Guasch A, Querol E: A β-glucosidase gene (BGL3) from Streptomyces sp. strain-QM-B814 – molecular cloning, nucleotide-sequence, purification and characterization of the encoded enzyme, a new member of family 1 glycosyl hydrolases. Eur J Biochem. 1994, 223: 557-565. 10.1111/j.1432-1033.1994.tb19025.x.
Article
CAS
Google Scholar
Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausin C, Querol E, Planas A, Perezpons JA: Mechanism of the family 1 β-glucosidase from the Streptomyces sp: catalytic residues and kinetic studies. Biochemistry. 2001, 40: 5975-5982. 10.1021/bi002947j.
Article
CAS
Google Scholar
Himmel ME, Tucker MP, Lastick SM, Oh KK, Fox JW, Spindler DD, Grohmann K: Isolation and characterization of an 1,4-β-D-glucan glucohydrolase from the yeast, Torulopsis wickerhamii. J Biol Chem. 1986, 261: 12948-12955.
CAS
Google Scholar
Kengen SWM, Luesink EJ, Stams AJM, Zehnder AJB: Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem. 1993, 213: 305-312. 10.1111/j.1432-1033.1993.tb17763.x.
Article
CAS
Google Scholar
Belancic A, Gunata Z, Vallier MJ, Agosin E: β-glucosidase from the grape native yeast Debaromyces vanrijiae: purification, characterization, and its effect on monoterpene content of a muscat grape juice. J Agric Food Chem. 2003, 51: 1453-1459. 10.1021/jf025777l.
Article
CAS
Google Scholar
Zemin F, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y: Cloning and characterization of β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol. 2010, 20: 1351-1358. 10.4014/jmb.1003.03011.
Article
Google Scholar
Gruno M, Väljamäe P, Pettersson G, Johansson G: Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng. 2004, 86: 503-511. 10.1002/bit.10838.
Article
CAS
Google Scholar
Jalak J, Kurašin M, Teugjas H, Väljamäe P: Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem. 2012, 287: 28802-28815. 10.1074/jbc.M112.381624.
Article
CAS
Google Scholar
Murphy L, Bohlin C, Baumann MJ, Olsen SN, Sorensen TH, Anderson L, Borch K, Westh P: Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb Technol. 2013, 52: 163-169. 10.1016/j.enzmictec.2013.01.002.
Article
CAS
Google Scholar
Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P: Pre-steady state kinetics for the hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem. 2012, 287: 18451-18458. 10.1074/jbc.M111.334946.
Article
CAS
Google Scholar
Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M: Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science. 2011, 333: 1279-1282. 10.1126/science.1208386.
Article
CAS
Google Scholar
Sipos B, Benkö Z, Reczey K, Viikari L, Siika-aho M: Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol. 2010, 161: 347-364. 10.1007/s12010-009-8824-4.
Article
CAS
Google Scholar
Tong CC, Cole AL, Shepherd MG: Purification and properties of the cellulases from the thermophilic fungus Thermoascus aurantiacus. Biochem J. 1980, 191: 83-94.
Article
CAS
Google Scholar
de Palma-Fernandez ER, Gomes E, da Silva R: Purification and characterization of two β-glucosidases from the thermophilic fungus Thermoascus aurantiacus. Folia Microbiol. 2002, 47: 685-690. 10.1007/BF02818672.
Article
CAS
Google Scholar
Hong J, Tamaki H, Kumagai H: Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol. 2007, 73: 1331-1339. 10.1007/s00253-006-0618-9.
Article
CAS
Google Scholar