Durre P: Biobutanol: an attractive biofuel. Biotechnol J. 2007, 2: 1525-1534. 10.1002/biot.200700168.
Article
Google Scholar
Durre P: Fermentative butanol production: bulk chemical and biofuel. Ann NY Acad Sci. 2008, 1125: 353-362. 10.1196/annals.1419.009.
Article
Google Scholar
Durre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Sturzenhofecker B, Ullmann S, Winzer K, Sauer U: Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev. 1995, 17: 251-262.
CAS
Google Scholar
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS: Fermentative butanol production by Clostridia. Biotechnol Bioeng. 2008, 101: 209-228. 10.1002/bit.22003.
Article
CAS
Google Scholar
Ezeji TC, Qureshi N, Blaschek H: Acetone–butanol–ethanol production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Micriobiol Biotechnol. 2004, 63: 653-658. 10.1007/s00253-003-1400-x.
Article
CAS
Google Scholar
Ezeji TC, Qureshi N, Blaschek HP: Butanol fermentation research: upstream and downstream manipulations. Chem Rec. 2004, 4: 305-314. 10.1002/tcr.20023.
Article
CAS
Google Scholar
Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ: Problems with the microbial production of butanol. J Ind Microbiol Biotechnol. 2009, 36: 1127-1138. 10.1007/s10295-009-0609-9.
Article
CAS
Google Scholar
Lutke-Eversloh T, Bahl H: Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol. 2011, 22: 634-647. 10.1016/j.copbio.2011.01.011.
Article
Google Scholar
Zhu XG, Long SP, Ort DR: Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol. 2010, 61: 235-261. 10.1146/annurev-arplant-042809-112206.
Article
CAS
Google Scholar
Machado IM, Atsumi S: Cyanobacterial biofuel production. J Biotechnol. 2012, 162: 50-56. 10.1016/j.jbiotec.2012.03.005.
Article
CAS
Google Scholar
Atsumi S, Higashide W, Liao J: Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009, 27: 1177-1180. 10.1038/nbt.1586.
Article
CAS
Google Scholar
Lan E, Liao J: Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng. 2011, 13: 353-363. 10.1016/j.ymben.2011.04.004.
Article
CAS
Google Scholar
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008, 10: 305-311. 10.1016/j.ymben.2007.08.003.
Article
CAS
Google Scholar
Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H: Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol. 2008, 77: 1305-1316. 10.1007/s00253-007-1257-5.
Article
CAS
Google Scholar
Shen CR, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng. 2008, 10: 312-320. 10.1016/j.ymben.2008.08.001.
Article
CAS
Google Scholar
Nicolaou SA, Gaida SM, Papoutsakis ET: A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng. 2010, 12: 307-331. 10.1016/j.ymben.2010.03.004.
Article
CAS
Google Scholar
Dunlop MJ: Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels. 2011, 4: 32-10.1186/1754-6834-4-32.
Article
CAS
Google Scholar
Papoutsakis ET: Engineering solventogenic clostridia. Curr Opin Biotechnol. 2008, 19: 420-429. 10.1016/j.copbio.2008.08.003.
Article
CAS
Google Scholar
Ezeji T, Milne C, Price ND, Blaschek HP: Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol. 2010, 85: 1697-1712. 10.1007/s00253-009-2390-0.
Article
CAS
Google Scholar
Liyanage H, Young M, Kashket ER: Butanol tolerance of Clostridium beijerinckii NCIMB 8052 associated with down-regulation of gldA by antisense RNA. J Mol Microbiol Biotechnol. 2000, 2: 87-93.
CAS
Google Scholar
Jia K, Zhang Y, Li Y: Identification and Characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. PLoS One. 2012, 7: e38815-10.1371/journal.pone.0038815.
Article
CAS
Google Scholar
Zhang H, Chong H, Ching CB, Song H, Jiang R: Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol. 2012, 94: 1107-1117. 10.1007/s00253-012-4012-5.
Article
CAS
Google Scholar
Atsumi S, Wu TY, Machado IMP, Huang WC, Chen PY, Pellegrini M, Liao JC: Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol. 2010, 6: 449-
Article
Google Scholar
Reyes LH, Almario MP, Kao KC: Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One. 2011, 6 (3): e17678-10.1371/journal.pone.0017678.
Article
CAS
Google Scholar
Zhang W, Li F, Nie L: Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology. 2010, 156: 287-301. 10.1099/mic.0.034793-0.
Article
CAS
Google Scholar
Tian XX, Chen L, Wang JX, Qiao J, Zhang WW: Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics. 2012, 78: 326-345.
Article
Google Scholar
Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, Shimpo S, Yamada M, Tabata S: Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res. 2003, 10: 221-228. 10.1093/dnares/10.5.221.
Article
CAS
Google Scholar
Noone D, Howell A, Collery R, Devine KM: YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol. 2001, 183: 654-663. 10.1128/JB.183.2.654-663.2001.
Article
CAS
Google Scholar
Snider J, Gutsche I, Lin M, Baby S, Cox B, Butland G, Greenblatt J, Emili A, Houry WA: Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA + ATPase. J Biol Chem. 2006, 281: 1532-1546.
Article
CAS
Google Scholar
Dieppedale J, Sobral D, Dupuis M, Dubail I, Klimentova J, Stulik J, Postic G, Frapy E, Meibom KL, Barel M, Charbit A: Identification of a putative chaperone involved in stress resistance and virulence in Francisella tularensis. Infect Immun. 2011, 79: 1428-1439. 10.1128/IAI.01012-10.
Article
CAS
Google Scholar
Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD: Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol. 2010, 76: 1935-1945. 10.1128/AEM.02323-09.
Article
CAS
Google Scholar
Das PK, Bagchi SN: Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. Protoplasma. 2012, 249: 65-74. 10.1007/s00709-011-0262-9.
Article
CAS
Google Scholar
Kim HG, Kim BC, Park EH, Lim CJ: Stress-dependent regulation of a monothiol glutaredoxin gene from Schizosaccharomyces pombe. Can J Microbiol. 2005, 51: 613-620. 10.1139/w05-034.
Article
CAS
Google Scholar
Pujol-Carrion N, De la Torre-Ruiz MA A: Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance. Appl Environ Microbiol. 2010, 76: 7826-7835. 10.1128/AEM.01755-10.
Article
CAS
Google Scholar
Qiao JJ, Wang JX, Chen L, Tian XX, Zhang WW: Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic response to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res. 2012, 11 (11): 5286-5300. 10.1021/pr300504w.
Article
CAS
Google Scholar
Zhang W, Culley DE, Hogan M, Vitirit L, Brockman FJ: Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie Van Leeuwenhoek. 2006, 90: 41-55. 10.1007/s10482-006-9059-9.
Article
CAS
Google Scholar
Moskovitz J, Berlett B, Poston JM, Stadtman ER: The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA. 1997, 94: 9585-9589. 10.1073/pnas.94.18.9585.
Article
CAS
Google Scholar
Moskovitz J, Lescher E, Berlett BS, Azare J, Poston JM, Stadtman ER: Over-expression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci USA. 1998, 95: 14071-14075. 10.1073/pnas.95.24.14071.
Article
CAS
Google Scholar
Truong-Bolduc QC, Ding Y, Hooper DC: Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus. J Bacteriol. 2008, 190: 7375-7381. 10.1128/JB.01068-08.
Article
CAS
Google Scholar
Economou A: Bacterial protein translocase: a unique molecular machine with an army of substrates. FEBS Lett. 2000, 476: 18-21. 10.1016/S0014-5793(00)01662-8.
Article
CAS
Google Scholar
Cline K, McCaffery M: Evidence for a dynamic and transient pathway through the TAT protein transport machinery. EMBO J. 2007, 26: 3039-3049. 10.1038/sj.emboj.7601759.
Article
CAS
Google Scholar
von Wobeser E, Ibelings BW, Bok J, Krasikov V, Huisman J, Matthijs HCP: Concerted changes in gene expression and Cell physiology of the cyanobacterium Synechocystis sp. Strain PCC 6803 during transitions between nitrogen and light-limited growth. Plant Physiol. 2011, 155: 1445-1457. 10.1104/pp.110.165837.
Article
CAS
Google Scholar
Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S: Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol. 2005, 31: 55-67. 10.1080/10408410590899228.
Article
CAS
Google Scholar
Kolodny NH, Bauer D, Bryce K, Klucevsek K, Lane A, Medeiros L, Mercer W, Moin S, Park D, Petersen J, Wright J, Yuen C, Wolfson AJ, Allen MM: Effect of nitrogen source on cyanophycin synthesis in Synechocystis sp. strain PCC 6308. J Bacteriol. 2006, 188: 934-940. 10.1128/JB.188.3.934-940.2006.
Article
CAS
Google Scholar
Schäfer L, Sandmann M, Woitsch S, Sandmann G: Coordinate up-regulation of carotenoid biosynthesis as a response to light stress in Synechococcus PCC7942. Plant Cell Environ. 2006, 29: 1349-1356. 10.1111/j.1365-3040.2006.01515.x.
Article
Google Scholar
Sandesh Kamath B, Vidhyavathi R, Sarada R, Ravishankar GA: Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresour Technol. 2008, 99: 8667-8673. 10.1016/j.biortech.2008.04.013.
Article
CAS
Google Scholar
Nodop A, Pietsch D, Höcker R, Becker A, Pistorius EK, Forchhammer K, Michel KP: Transcript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation. Plant Physiol. 2008, 147: 747-763. 10.1104/pp.107.114058.
Article
CAS
Google Scholar
Pandey S, Rai R, Rai LC: Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics. 2012, 75: 921-937. 10.1016/j.jprot.2011.10.011.
Article
CAS
Google Scholar
Srivastava AK, Alexova R, Jeon YJ, Kohli GS, Neilan BA: Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120. Microbiology. 2011, 157: 911-917. 10.1099/mic.0.045682-0.
Article
CAS
Google Scholar
Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG, Smith RD, Pakrasi HB: Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteomics. 2010, 9: 2678-2689. 10.1074/mcp.M110.000109.
Article
CAS
Google Scholar
Quintero MJ, Muro-Pastor AM, Herrero A, Flores E: Arginine catabolism in the cyanobacterium Synechocystis sp. Strain PCC 6803 involves the urea cycle and arginase pathway. J Bacteriol. 2000, 182: 1008-1015. 10.1128/JB.182.4.1008-1015.2000.
Article
CAS
Google Scholar
Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR: Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 2003, 4: 989-993. 10.1038/sj.embor.embor944.
Article
CAS
Google Scholar
Urbanczyk-Wochniak E, Willmitzer L, Fernie AR: Integrating profiling data: using linear correlation to reveal coregulation of transcript and metabolites. Methods Mol Biol. 2007, 358: 77-85. 10.1007/978-1-59745-244-1_5.
Article
CAS
Google Scholar
Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D: An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol. 2009, 149: 1366-1386. 10.1104/pp.108.131805.
Article
CAS
Google Scholar
Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M, Brown SD: Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics. 2009, 10: 34-10.1186/1471-2164-10-34.
Article
Google Scholar
Chaussee MA, McDowell EJ, Rieck LD, Callegari EA, Chaussee MS: Proteomic analysis of a penicillin-tolerant rgg mutant strain of Streptococcus pyogenes. J Antimicrob Chemother. 2006, 58: 752-759. 10.1093/jac/dkl319.
Article
CAS
Google Scholar
Guo W, Hao H, Dai M, Wang Y, Huang L, Peng D, Wang X, Wang H, Yao M, Sun Y, Liu Z, Yuan Z: Development of quinoxaline 1, 4-dioxides resistance in Escherichia coli and molecular change under resistance selection. PLoS One. 2012, 7: e43322-10.1371/journal.pone.0043322.
Article
CAS
Google Scholar
Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD: Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng. 2009, 102: 1377-1386. 10.1002/bit.22181.
Article
CAS
Google Scholar
Tölle J, Michel KP, Kruip J, Kahmann U, Preisfeld A, Pistorius EK: Localization and function of the IdiA homologue Slr1295 in the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology. 2002, 148: 3293-3305.
Article
Google Scholar
Huang F, Fulda S, Hagemann M, Norling B: Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics. 2006, 6: 910-920. 10.1002/pmic.200500114.
Article
CAS
Google Scholar
Ashby MK, Mullineaux CW: Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol Lett. 1999, 181: 253-260. 10.1111/j.1574-6968.1999.tb08852.x.
Article
CAS
Google Scholar
Nie L, Wu G, Culley DE, Scholten JC, Zhang W: Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol. 2007, 27: 63-75. 10.1080/07388550701334212.
Article
CAS
Google Scholar
Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010, 11: R106-10.1186/gb-2010-11-10-r106.
Article
CAS
Google Scholar
Kloft N, Rasch G, Forchhammer K: Protein phosphatase PphA from Synechocystis sp. PCC 6803: the physiological framework of PII-P dephosphorylation. Microbiology. 2005, 151: 1275-1283. 10.1099/mic.0.27771-0.
Article
CAS
Google Scholar
Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A: Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001, 13: 11-29.
Article
CAS
Google Scholar
Stein SE: An integrated method for spectrum extraction and compound identification from GC/MS data. Mass Spectrom. 1999, 10 (8): 770-781.
Article
CAS
Google Scholar
Fiehn O: Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol. 2002, 48: 155-171. 10.1023/A:1013713905833.
Article
CAS
Google Scholar
Laiakis EC, Morris GA, Fornace AJ, Howie SR: Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study. PLoS One. 2010, 5 (9): e12655-10.1371/journal.pone.0012655.
Article
Google Scholar
Wang HL, Postier BL, Burnap RL: Optimization of fusion PCR for in vitro construction of gene knockout fragments. Biotechniques. 2002, 33 (26): 28-30.
Google Scholar