Cherry J, Fidantsef A. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14:438–43.
Article
CAS
Google Scholar
Pakula T, Salonen K, Uusitalo J, Penttilä M. The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology. 2005;151:43–135.
Article
CAS
Google Scholar
Castillo FJ, Blanch HW, Wilke CR. Lactase production in continuous culture by Trichoderma reesei Rut-C30. Biotechnol Lett. 1984;6(9):593–6.
Article
CAS
Google Scholar
Schafner DW, Toledo RT. Cellulase production in continuous culture by Trichoderma reesei on xylose-based media. Biotechnol Bioeng. 1992;39(8):865–9.
Article
CAS
Google Scholar
Chaudhuri BK, Sahai V. Comparison of growth and maintenance parameters for cellulase biosynthesis by Trichoderma reesei-C5 with some published data. Enzym Microb Technol. 1994;16(12):1079–83.
Article
CAS
Google Scholar
Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M. Correlation of gene expression and protein production rate—a system wide study. BMC Genomics. 2011;12(1):616.
Article
CAS
Google Scholar
Aro N, Pakula T, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 2005;29(4):719–39.
Article
CAS
Google Scholar
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics. 2013;14(4):230–49.
Article
CAS
Google Scholar
Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro SI, Mori K, Tashiro K, Kuhara S, Matsuzawa T, Yaoi K, Sakamoto Y, Tanaka N, Morikawa Y, Ogasawara W. The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol Biofuels. 2015;8(1):230.
Article
Google Scholar
Ilmen M, Saloheimo A, Onnela M-L, Penttilä ME. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol. 1997;63(4):1298–306.
CAS
Google Scholar
Iyayi CB, Bruchmann E-E, Kubicek CP. Induction of cellulase formation in Trichoderma reesei by cellobiono-1,5-lacton. Arch Microbiol. 1989;151(4):326–30.
Article
CAS
Google Scholar
Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact. 2012;11(1):134.
Article
CAS
Google Scholar
Ivanova C, Bååth JA, Seiboth B, Kubicek CP. Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One. 2013;8(5):62631.
Article
CAS
Google Scholar
Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics. 2013;14(1):541.
Article
CAS
Google Scholar
Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels. 2014;7(1):14.
Article
CAS
Google Scholar
Poggi-Parodi D, Bidard F, Pirayre A, Portnoy T, Blugeon C, Seiboth B, Kubicek CP, Crom SL, Margeot A. Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain. Biotechnol Biofuels. 2014;7(1):173.
Article
CAS
Google Scholar
dos Santos Castro L, Pedersoli W, Antoniê AC, Steindorff A, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown N, Goldman GH, Faç VM, Persinoti GF, Silva R. Comparative metabolism of cellulose sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels. 2014;7(1):41.
Article
Google Scholar
Häkkinen M, Sivasiddarthan D, Aro N, Saloheimo M, Pakula TM. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb Cell Fact. 2015;14(1):63.
Article
CAS
Google Scholar
Ilmé M, Thrane C, Penttilä M. The glucose repressor genecre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet. 1996;251(4):451–60.
Google Scholar
Rauscher R, Wurleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttilä M, Mach RL. Transcriptional regulation of xyn1 encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell. 2006;5(3):447–56.
Article
CAS
Google Scholar
Saloheimo A. Isolation of the ace1 Gene Encoding a Cys2-His2 Transcription Factor Involved in Regulation of Activity of the Cellulase Promoter cbh1 of Trichoderma reesei. J Biol Chem. 2000;275(8):5817–25.
Article
CAS
Google Scholar
Aro N, Saloheimo A, Ilmen M, Penttila M. ACEII a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem. 2001;276(26):24309–14.
Article
CAS
Google Scholar
Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA. 2012;109(19):7397–402.
Article
CAS
Google Scholar
Seiboth B, Karimi R, Phatale P, Linke R, Hartl L, Sauer D, Smith K, Baker S, Freitag M, Kubicek C. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol. 2012;84:1150–64.
Article
CAS
Google Scholar
Saloheimo M, Valkonen M, Penttilä M. Activation mechanisms of the HACI-mediated unfolded protein response in filamentous fungi. Mol Microbiol. 2003;47(4):1149–61.
Article
CAS
Google Scholar
Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttila M. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei: evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem. 2003;278(45):45011–20.
Article
CAS
Google Scholar
Saloheimo M, Lund M, Penttilä M. The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet. 1999;262(1):35–45.
Article
CAS
Google Scholar
Arvas M, Pakula T, Lanthaler K, Saloheimo M, Valkonen M, Suortti T, Robson G, Penttilä M. Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics. 2006;7:32.
Article
CAS
Google Scholar
Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology. 2011;158(1):46–57.
Article
CAS
Google Scholar
Simeonidis E, Price ND. Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol. 2015;42(3):327–38.
Article
CAS
Google Scholar
Klein T, Niklas J, Heinzle E. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells. J Ind Microbiol Biotechnol. 2015;42(3):453–64.
Article
CAS
Google Scholar
Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Rußmayer H, Pflügl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng. 2014;24:129–38.
Article
CAS
Google Scholar
Gritzali M, Brown RD. The cellulase system of Trichoderma. In: advances in chemistry. Washington: American Chemical Society (ACS); 1979. pp. 237–260. http://www.dx.doi.org/10.1021/ba-1979-0181.ch012. Accessed 19 May 2016.
Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J-C, Monot F, Asther M. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels. 2008;1(1):18.
Article
CAS
Google Scholar
Adav SS, Chao LT, Sze SK. Protein abundance in multiplexed samples (PAMUS) for quantitation of Trichoderma reesei secretome. J Proteomics. 2013;83:180–96.
Article
CAS
Google Scholar
Nummi M, Niku-Paavola ml, Lappalainen A, Enari TM, Raunio V. Cellobiohydrolase from Trichoderma reesei. Biochem J. 1983;215(3):677–83.
Article
CAS
Google Scholar
Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttila M, Saloheimo M, Mach RL, Mach-Aigner AR. Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol. 2010;77(1):114–21.
Article
CAS
Google Scholar
Heinonen M, Guipaud O, Milliat F, Buard V, Micheau B, Tarlet G, Benderitter M, Zehraoui F, Alche-Buc F. Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction. Bioinformatics. 2015;31(5):728–35.
Article
Google Scholar
Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2010;39:D19–21.
Article
CAS
Google Scholar
Love M, Huber W anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
CAS
Google Scholar
Savage RS, Heller K, Xu Y, Ghahramani Z, Truman WM, Grant M, Denby KJ, Wild DL. R/BHC: fast Bayesian hierarchical clustering for microarray data. BMC Bioinformatics. 2009;10(1):242.
Article
CAS
Google Scholar
Elemento O, Slonim N, Tavazoie S. A universal framework for regulatory element discovery across all genomes and data types. Mol Cell. 2007;28(2):337–50.
Article
CAS
Google Scholar
Kumar L, Breakspear A, Kistler C, Ma L-J, Xie X. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes. BMC Genomics. 2010;11(1):208.
Article
CAS
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57.
Article
CAS
Google Scholar
Proft M. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J. 2001;20(5):1123–33.
Article
CAS
Google Scholar
Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J. A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci. 2008;105(11):4387–92.
Article
CAS
Google Scholar
van Peij NNME, Visser J, de Graaff LH. Isolation and analysis of xln R encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol. 1998;27(1):131–42.
Article
Google Scholar
Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N. A transcriptional activator AoXlnR controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol. 2002;35(2):157–69.
Article
CAS
Google Scholar
Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y. Identification of specific binding sites for XYR1 a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol. 2009;46(8):564–74.
Article
CAS
Google Scholar
dos Silva-Rocha R, Santos Castro L, Antoniê ACC, Guazzaroni ME, Persinoti GF, Silva RN. Deciphering the Cis-regulatory elements for XYR1 and CRE1 regulators in Trichoderma reesei. PLoS One. 2014;9(6):99366.
Article
CAS
Google Scholar
Vinko O. Inferring Trichoderma reesei gene regulatory network. Bachelor Thesis. https://www.aaltodoc.aalto.fi/handle/123456789/11809. Accessed 19 May 2016.
Segal E, Taskar B, Gasch A, Friedman N, Koller D. Rich probabilistic models for gene expression. Bioinformatics. 2001;17(Suppl 1):243–52.
Article
Google Scholar
Varma A, Palsson BO. Metabolic flux balancing: basic concepts scientific and practical use. Bio/Technology. 1994;12(10):994–8.
Article
CAS
Google Scholar
Orth J, Thiele I, Palsson B. What is flux balance analysis? Nat Biotechnol. 2010;28:245–8.
Article
CAS
Google Scholar
Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, Oja M, Holm L, Penttilä M, Rousu J, Arvas M. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput Biol. 2014;10(2):1003465.
Article
CAS
Google Scholar
Mahadevan R, Schilling C. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003;5:264–76.
Article
CAS
Google Scholar
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5’-methylthioadenosine. IUBMB Life. 2009;61(12):1132–42.
Article
CAS
Google Scholar
Collen A, Saloheimo M, Bailey M, Penttilä M, Pakula TM. Protein production and induction of the unfolded protein response inTrichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng. 2005;89(3):335–44.
Article
CAS
Google Scholar
Jourdier E, Poughon L, Larroche C, Monot F, Chaabane F. A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains. Microb Cell Fact. 2012;11(1):70.
Article
CAS
Google Scholar
Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. 2nd ed. Berlin: Springer; 2009.
Google Scholar
Koch AL. The monod model and its alternatives. In: Koch A, Robinson JA, Milliken GA, editors. Mathematical modeling in microbial ecology. Berlin: Springer; 1998. p. 62–93.
Chapter
Google Scholar
Solak E, Murray-Smith R, Leithead W, Leith D, Rasmussen C. Derivative observations in Gaussian process models of dynamic systems. Appear Adv Neural Inf Process Syst. 2003;16:1057–64.
Google Scholar
Reese ET, Smakula E, Perlin AS. Enzymic production of cellotriose from cellulose. Arch Biochem Biophys. 1959;85(1):171–5.
Article
CAS
Google Scholar
Suzuki H, Igarashi K, Samejima M. Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete phanerochaete chrysosporium. Appl Environ Microbiol. 2010;76(18):6164–70.
Article
CAS
Google Scholar
Escobar-Vera J. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem. 1997;272(15):10169–74.
Article
Google Scholar
Kubicek CP, Messner R, Gruber F, Mandels M, Kubicek-Pranz EM. Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease. J Biol Chem. 1993;268(26):19364–8.
CAS
Google Scholar
Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, Wang H, Wang Z, Bao X, Chen G, Liu W. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem. 2013;288:32861–72.
Article
CAS
Google Scholar
Vandijken J, Scheffers W. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett. 1986;32(3–4):199–224.
Article
CAS
Google Scholar
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66(2):300–72.
Article
CAS
Google Scholar
Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong K-K, Jacobson T, Dahl P, Schaber J, Nielsen J, Hohmann S, Klipp E. Quantitative analysis of glycerol accumulation glycolysis and growth under hyper osmotic stress. PLoS Comput Biol. 2013;9(6):1003084.
Article
CAS
Google Scholar
Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.
Article
CAS
Google Scholar
Tyo KE, Liu Z, Petranovic D, Nielsen J. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biol. 2012;10(1):16.
Article
CAS
Google Scholar
Xu Q, Singh A, Himmel ME. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol. 2009;20(3):364–71.
Article
CAS
Google Scholar
Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, Huang R. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J. 2014;2014:1–8.
Google Scholar
Sato T, Ohsumi Y, Anraku Y. Substrate specificities of active transport systems for amino acids in vacuolar-membrane vesicles of Saccharomyces cerevisiae. Evidence of seven independent proton/amino acid antiport systems. J Biol Chem. 1984;259:11505–8.
CAS
Google Scholar
Cramer C, Vaughn L, Davis R. Basic amino acids and inorganic polyphosphates in Neurospora crassa: independent regulation of vacuolar pools. J Bacteriol. 1980;142:945–52.
CAS
Google Scholar
Tortajada M, Llaneras F, Ramó D, Picó J. Estimation of recombinant protein production in Pichia pastoris based on a constraint-based model. J Process Control. 2012;22(6):1139–51.
Article
CAS
Google Scholar
Driouch H, Melzer G, Wittmann C. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng. 2012;14(1):47–58.
Article
CAS
Google Scholar
Jordà J, Jouhten P, Cá E, Maaheimo H, Albiol J, Ferrer P. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Microb Cell Fact. 2012;11(1):57.
Article
CAS
Google Scholar
Huberts DHEW, Niebel B, Heinemann M. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res. 2011;12(2):118–28.
Article
CAS
Google Scholar
Gerosa L, Sauer U. Regulation and control of metabolic fluxes in microbes. Curr Opin Biotechnol. 2011;22(4):566–75.
Article
CAS
Google Scholar
Kochanowski K, Volkmer B, Gerosa L, van Rijsewijk BRH, Schmidt A, Heinemann M. Functioning of a metabolic flux sensor in Escherichia coli. Proc Natl Acad Sci. 2013;110(3):1130–5.
Article
CAS
Google Scholar
Machado D, Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 2014;10(4):1003580.
Article
CAS
Google Scholar
Schwender J, König C, Klapperstück M, Heinzel N, Munz E, Hebbelmann I, Hay JO, Denolf P, Bodt SD, Redestig H, Caestecker E, Jakob PM, Borisjuk L, Rolletschek H. Transcript abundance on its own cannot be used to infer fluxes in central metabolism. Front Plant Sci. 2014;5:668.
Article
Google Scholar
Forster J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003;13(2):244–53.
Article
CAS
Google Scholar
Aung HW, Henry SA, Walker LP. Revising the representation of fatty acid glycerolipid and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind Biotechnol. 2013;9(4):215–28.
Article
CAS
Google Scholar
Gremel G, Dorrer M, Schmoll M. Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei). BMC Microbiol. 2008;8(1):174.
Article
CAS
Google Scholar
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán M, Baker S, Brown C, Cervantes-Badillo M, Cetz-Chel J, Cristobal-Mondragon G, Delaye L, Esquivel-Naranjo E, Frischmann A, Gallardo-Negrete JJ, García-Esquivel M, Gomez-Rodriguez E, Greenwood D, Hernández-Oñate M, Kruszewska J, Lawry R, Mora-Montes H, Muñoz-Centeno T, Nieto-Jacobo M, Nogueira LG, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning K, Rodriguez-Iglesias A, Rosales-Saavedra M, Sánchez-Arreguín J, Seidl-Seiboth V, Stewart A, Uresti-Rivera E, Wang C, Wang T, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The genomes of three uneven siblings: footprints of the lifestyles of three Trichoderma species. Microbiol Mol Biol Rev. 2016;80:205–327.
Article
Google Scholar
PakulaT, Saloheimo M, HÄKKINEN M, Westerholm-Parvinen A, Penttilä M, Vitikainen M. Method for protein production in filamentous fungi. Google Patents. EP Patent App. EP20,110,726,858. 2013. https://google.com/patents/EP2576792A2?cl=en. Accessed 19 May 2016.
Pakula T, Saloheimo M, HÄKKINEN M, Westerholm-Parvinen A, Penttilä M, Vitikainen M. Improved production of proteins in filamentous fungi. Google Patents. EP Patent App. EP20,110,726,860. 2013. http://www.google.com/patents/EP2576794A2?cl=en. Accessed 19 May 2016.
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26(5):553–60.
Article
CAS
Google Scholar
Arvas M, Kivioja T, Mitchell A, Saloheimo M, Ussery D, Penttilä M, Oliver S. Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics. 2007;8(1):325.
Article
CAS
Google Scholar
Kontkanen H, Westerholm-Parvinen A, Saloheimo M, Bailey M, Rättö M, Mattila I, Mohsina M, Kalkkinen N, Nakari-Setälä T, Buchert J. Novel coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol. 2009;75(7):2148–57.
Article
CAS
Google Scholar
Bailey MJ, Tätiharju J. Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol. 2003;62(2–3):156–62.
Article
CAS
Google Scholar
Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15(1):182.
Article
Google Scholar
Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM. Ensembl genomes 2016: more genomes more complexity. Nucleic Acids Res. 2015;44:D574–80.
Article
Google Scholar
Lawrence M, Huber W, Pagè H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9(8):1003118.
Article
CAS
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2006;23(2):257–8.
Article
CAS
Google Scholar
Pages H, Carlson M, FalconS, Li N. AnnotationDbi: annotation database interface. R package version 1.28.2.
Storey JD, Taylor JE, Siegmund D. Strong control conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Ser B Stat Methodol. 2004;66(1):187–205.
Article
Google Scholar
Shen L, Sinai M. GeneOverlap: test and visualize gene overlaps. R package version 1.2.0. 2013. http://www.shenlab-sinai.github.io/shenlab-sinai/. Accessed 19 May 2016.
Weng S. Saccharomyces genome database (SGD) provides biochemical and structural information for budding yeast proteins. Nucleic Acids Res. 2003;31(1):216–8.
Article
CAS
Google Scholar
Gelius-Dietrich G, Desouki A, Fritzemeier C, Lercher MJ. Sybil—efficient constraint-based modelling in R. BMC Syst Biol. 2013;7(1):125.
Article
CAS
Google Scholar
Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in-silico evaluation of their potentials. BMC Syst Biol. 2012;6(1):24.
Article
CAS
Google Scholar
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2013;42(D1):199–205.
Article
CAS
Google Scholar
Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2015;44:D471–80.
Article
Google Scholar
Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
Google Scholar
Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M. Correlation of gene expression and protein production rate—a system wide study. BMC Genomics. 2011;12:616.
Article
CAS
Google Scholar