Santos RB, Hart PW, Jameel H, Chang H-M. Wood based lignin reaction important to the biorefinery and pulp and paper industries. BioRes. 2013;8(1):1456–77.
Article
Google Scholar
Lawoko M. Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods. Int J Biol Macromol. 2013;62:705–13.
Article
CAS
Google Scholar
Sjöström E. Wood chemistry, fundamentals and applications. 2nd ed. San Diego: Academic Press; 1993.
Google Scholar
Nhuchhen DR, Basu P, Acharya B. A compressive review on biomass torrefecation. Int J Renew Erg Biofuel. 2014;2014:1–57.
Google Scholar
Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Comb Sci. 2012;38:522–50.
Article
CAS
Google Scholar
Arsene M-A, Bilba K, Savastano H, Ghavami K. Treatments of non-wood plant fibers used as reinforcement in composite materails. Mater Res. 2013;16(4):903–23.
Article
CAS
Google Scholar
Smit A, Huijgen W. Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem. 2017;19:5505.
Article
CAS
Google Scholar
Pothiraj C, Kanmani P, Balaji P. Bioconversion of lignocellulose materials. Mycobiology. 2006;34(4):159–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandel A, Chandrasekjar G, Radhika K, Ravinder R, Ravindra P. Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev. 2011;6(1):8–20.
CAS
Google Scholar
Lora J, Glasser W. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Env. 2002;10(112):39–48.
Article
CAS
Google Scholar
Vishtal A, Kraslawski A. Challenges in industrial applications of technical lignins. BioResources. 2011;6(3):3547–68.
Google Scholar
Zheng Y, Pan Z, Zhang R. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng. 2009;2(3):51–68.
CAS
Google Scholar
Shokri J, Adibkia K. Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L, editors. Cellulose-medical, pharmaceutical and electronic applications. InTech: New York; 2013. p. 47–66.
Google Scholar
Garcia J, Zamudio M, Perez A, Feria M, Gomide J, Coledette J, Lopez F. Soda-AQ pulping of paulownia wood after hydrolysis treatment. BioResources. 2011;6(2):971–86.
CAS
Google Scholar
Balakshin M, Capanema E, Chang H. MWL fraction with a high concentration of lignin–carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforchung. 2007;61:1–7.
Article
CAS
Google Scholar
Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–8.
Article
CAS
PubMed
Google Scholar
Du X, Perez-Boada M, Fernandez C, et al. Analysis of lignin–carbohydrate and lignin–lignin linkages after hydrolase treatment of xylan–lignin, glucomannan-lignin and glucan–lignin complexes from spruce wood. Planta. 2014;239:1079–90.
Article
CAS
PubMed
Google Scholar
Balakshin M, Capanema E, Berlin A. Isolation and analysis of lignin–carbohydrate complexes preparations with traditional and advanced methods: a review. In: Atta-ur-Rahman A, editor. Studies in natural products chemistry 42. Amsterdam: Elsevier; 2014. p. 83–111.
Google Scholar
Lawoko M, Henriksson G, Gellerstedt G. Structural differences between the lignin–carbohydrate complexes present in wood and in chemical pulps. Biomacromolelules. 2005;6:3467–73.
Article
CAS
Google Scholar
Henriksson G, Lawoko M, Martin M, Gellerstedt G. Lignin–carbohydrate network in wood and pulps: a determinant for reactivity. Holzforschung. 2007;61:668–74.
Article
CAS
Google Scholar
Balakshin M, Capanema E, Gracz H, Chang H-M, Jameel H. Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta. 2011;233:1097–110.
Article
CAS
PubMed
Google Scholar
Dammstrom S, Salmen L, Gatenholm P. On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources. 2009;4(1):3–14.
Google Scholar
Yao L, Chen C, Zheng X, Peng Z, Yang H, Xie Y. Determination of lignin–carbohydrate complexes structure of wheat straw using carbon-13 isotope as a tracer. BioResources. 2016;11(3):6692–707.
Article
CAS
Google Scholar
You T-T, Zhang L-M, Zhou S-K, Xu F. Structural elucidation of lignin–carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Ind Crop Prod. 2015;71:65–74.
Article
CAS
Google Scholar
Zhang B, Fu G-Q, Niu Y-S, Peng F, Yao C-L, Sun R-C. Variations of lignin–lignin and lignin–carbohydrate linkages from young Neosinocalamus affinis bamboo culms. RSC Adv. 2016;6:15478–84.
Article
CAS
Google Scholar
Shevchenko SM, Bailey GW. Life after death: lignin–humic relationships reexamined. Crit Rev Environ Sci Technol. 1996;26:95–153.
Article
CAS
Google Scholar
Silva V, Jameel H, Gomes F, Batalha L, Coura M, Colodette J. Effect of lignin carbohydrate complexes of hardwood hybrids on the kraft pulping process. J Wood Chem Technol. 2017;37:52–61.
Article
CAS
Google Scholar
Gierer J, Wannstrom S. Formation of ether bonds between lignins and carbohydrates during kraft pulping. Holzforschung. 1986;40:347–52.
Article
CAS
Google Scholar
Tenkanen M, Tamminen T, Hortling B. Investigation of lignin–carbohydrate complexes in kraft pulps by selective enzymatic treatments. Appl Microbiol Biotechol. 1999;51:241–8.
Article
CAS
Google Scholar
Lawoko M, Henriksson G, Gellersted G. New method for quantitative preparation of lignin–carbohydrate complex from unbleached softwood kraft pulp: lignin–polysaccharide networks I. Holzforschung. 2003;57:69–74.
Article
CAS
Google Scholar
Li J, Martin-Sampedro R, Pedrazzi C, Gellerstedt G. Fractionation and characterization of lignin–carbohydrate complexes (LCC) from eucalyptus fibers. Holzforschung. 2011;65:43–50.
CAS
Google Scholar
Chen X, Lawoko M, van Heininhen A. Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol. 2010;101:7812–9.
Article
CAS
PubMed
Google Scholar
Balan V, da Costa L, Chundawat S, Marshall D. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog. 2009;25(2):365–75.
Article
CAS
PubMed
Google Scholar
Laureano-Perez L, Teymouri F, Akizadeh H, Dale B. Understanding factors that limit hydrolysis of biomass. Appl Biochem Biotechnol. 2005;124(1):1081–99.
Article
Google Scholar
Chandra RP, Bura R, Mabee W, Berlin A, Pan X, Saddler JN. Subsrate pretreatment: the key of effective enzymatic hydrolysis of lignocellulosics? Adv Bioechem Eng Biotechnol. 2007;108:67–93.
CAS
Google Scholar
Lam T, Iiyama K, Stone B. Hot alkali–labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochem. 2003;64:603–7.
Article
CAS
Google Scholar
Zhao X, Qi F, Liu D. Hierarchy nano-abd ultrastructure of lignocellulose and its impact on the bioconversion of cellulose. In: Rai M, da Silva S, editors. Nanotechnology for bioenergy and biofuel production. Cham: Springer; 2016. p. 117–52.
Google Scholar
Aro T, Fatehi P. Production and application of lignosulfonates and sulfonated lignin. Chemsuschem. 2017;10:1861–77.
Article
CAS
PubMed
Google Scholar
Olsson A-M, Salmen L. The effect of lignin composition on the viscoelastic properties of wood. Nordic Pulp Pap Res J. 1997;12:140–4.
Article
CAS
Google Scholar
Li H, McDonald AG. Fractionation and characterization of industrial lignins. Ind Crop Prod. 2014;62:67–76.
Article
CAS
Google Scholar
Obernberger I, Thek G. The pellet handbook: the production and thermal utilization of biomass pellets. London-Washnigton: Earthscan; 2010.
Google Scholar
Tarasov D, Leitch M, Fatehi P. Thermal properties of lignocellulosic precipitates from neutral sulfite semichemical pulping process. Fuel Process Technol. 2017;158:146–53.
Article
CAS
Google Scholar
Li M, Pu Y, Ragauskas AJ. Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem. 2016;4(45):1–8.
CAS
Google Scholar
Shevchenko SM, Chang K, Robinson J, Saddler JN. Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of sowtwood chips. Bioresour Technol. 2000;72:207–11.
Article
CAS
Google Scholar
Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B. A sustainable woody biomass biorefinery. Biotechnnol Adv. 2012;30:785–810.
Article
CAS
Google Scholar
Wilfor S, Sundberg K, Tenkanen M, Holmbom B. Spruce-derived mannans: a potential raw material for hydrocolloids and novel advanced natural materials. Carboh Polym. 2008;72:197–210.
Article
CAS
Google Scholar
Rissanen J, Grenman H, Xu C, Willfor S, Murzin D, Salmi T. Obtaining spruce hemicelluloses of desired molar mass by using pressurized hot water exctraction. Chemsuschem. 2014;7:2947–53.
Article
CAS
PubMed
Google Scholar
Xu C, Willfor S, Holmbom B. Rheological properties of mixtures of spruce galactoglucomannans and konjac glucomannan or some other polysaccharides. BioResources. 2008;3(3):713–30.
CAS
Google Scholar
Pathak P, Kaur P, Bhardwaj N. Microbial enzymes for pulp and paper industry: prospects and developments. In: Shukla P, editor. Microbial biotechnology: an interdisciplinary approach. Boca Raton: CRC Press Taylor & Francis Group; 2016. p. 163–240.
Chapter
Google Scholar
Kaupp A, Goss JR. Fuel. In: Kaupp A, Goss JR, editors. Small scale gas producer-engine systems. Springer: Berlin; 2013. p. 100–41.
Google Scholar
Grushnikov OP, Shorygina NN. The present state of the problem of lignin–carbohydrate bonds in plants tissues. Rus Chem Rev. 1970;39(8):684–94.
Article
Google Scholar
Erdmann J. Ueber die concretion in den pyrus. Ann Chem Pharm. 1866;138:1–19.
Article
Google Scholar
Koshijima T, Watanabe T. Association between lignin and carbohydrates in wood and other plant tissues. Berlin: Springer; 2003.
Book
Google Scholar
Jin Z, Katsumata K, Lam T, Iiyama K. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous wood. Biopolymers. 2006;83(2):103–10.
Article
CAS
PubMed
Google Scholar
Eriksson O, Goring D, Lindgren B. Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci Technol. 1980;14:267–79.
Article
CAS
Google Scholar
Lam T, Iiyma K. Characteristics of senescent straw cell walls of dwarf, semidwarf, and normal strains of rice (Oryza sativa) plants. J Wood Sci. 2000;46:376–80.
Article
Google Scholar
Meshitsuka G, Lee ZZ, Nakano J, Eda S. Studies of the nature of lignin–carbohydrate bonding. J Wood Chem Technol. 1982;2(3):251–67.
Article
CAS
Google Scholar
Minor J. Chemical linkage of pine polysaccharides to lignin. J Wood Chem Technol. 1982;2:1–16.
Article
CAS
Google Scholar
Brunow G, Lundquist K. Functional groups and bonding patterns in lignin (including the lignin–carbohydrate complexes). In: Heitner C, Dimmel D, Schmidt J, editors. Lignin and lignas: advances in chemistry. Boca Raton: CRC Press, Taylor & Francis Group; 2010. p. 267–301.
Chapter
Google Scholar
Kosikova B, Ebringerova A. Lignin–carbohydrate bonds in a residual soda spruce pulp lignin. Wood Sci and Technol. 1994;28:291–6.
Article
CAS
Google Scholar
Lawoko M. Lignin polysaccharide networks in softwood and chemical pulps: characterization, structure and reactivity. Doctoral dissertation. Stockholm: Royal Institute of Technology; 2005.
Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A. Biochemistry of the cell wall molecules. In: Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A, editors. Plant cell walls: from chemistry to biology. New York: Taylor & Francis Group; 2010. p. 67–118.
Chapter
Google Scholar
Oliveira D, Finger-Teixeira A, Mota T, et al. Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J. 2015;13:1224–32.
Article
PubMed
CAS
Google Scholar
Ralph J, Grabber JH, Hatfield RD. Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res. 1995;275:167–78.
Article
CAS
Google Scholar
Virgili F, Pagana G, Bourne L, et al. Feruluc acid excerption as a marker of consumption of a French maritime pine (Pinus Maritima) bark extract. Free Radic Biol Med. 2000;28(8):1249–56.
Article
CAS
PubMed
Google Scholar
Reiter J, Strittmatter H, Wiemann LO, Shieder D, Sieber V. Enzymatic cleavage of lignin β-O-4 aryl ether bonds via internal hydrogen transfer. Green Chem. 2013;15:1373–81.
Article
CAS
Google Scholar
Kosikova B, Joniak D, Kosakova L. On the properties of benzyl ether bonds in the lignin–saccharidic complex isolated from spruce. Holzforschung. 1979;33:11–4.
Article
CAS
Google Scholar
Takahashi N, Koshijima T. Ester linkages between lignin and glucuronoxylan in a lignin–carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol. 1988;22:231–41.
Article
CAS
Google Scholar
Takahashi N, Koshijima T. Molecular properties of lignin–carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods. Wood Sci Technol. 1988;22:177–89.
Article
CAS
Google Scholar
Lawoko M, Deshpande S, van Heiningen A. Pre-hydrolysis of the phenyl glycosidic bond in a model compound. Lenzinger Berichte. 2009;87:77–87.
CAS
Google Scholar
Cheng C, Wang J, Shen D, Xue J, Guan S, Gu S, Luo KH. Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: a review. Polymers. 2017;9(6):240.
Article
CAS
PubMed Central
Google Scholar
Buranov A, Mazza G. Lignin in straw of herbaceous crops. Ind Crops Prod. 2008;28:237–59.
Article
CAS
Google Scholar
Giummarella N, Zhang L, Henriksson G, Lawoko M. Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Adv. 2016;48:42120–31.
Article
CAS
Google Scholar
Zhao B-C, Chen B-U, Yang S, Yuan T-Q, Charlton A, Sun R-C. Structural variation of lignin and lignin–carbohydrate complex in Eucalyptus grandis × E. urophylla during its growth process. ACS Sustainable Chem Eng. 2016;5:1113–22.
Article
CAS
Google Scholar
Balakshin M, Capanema E. Comprehensive structural analysis of biorefinery lignins with a quantitative 13C NMR approach. RSC Adv. 2015;106:87187–99.
Article
CAS
Google Scholar
Capanema EA, Balakshin MY, Kadla JF. A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem. 2004;52:1850–60.
Article
CAS
PubMed
Google Scholar
Speight JG. Analysis of liquid effluents. In: Speight JG, editor. Environmental analysis and technology for the refining industry. New York: Wiley; 2005. p. 257–82.
Chapter
Google Scholar
Oinonen P, Zhang L, Lawoko M, Henriksson G. On the formation of lignin polysaccharide networks in Norway spruce. Phytochem. 2015;111:177–84.
Article
CAS
Google Scholar
Moore KJ, Jung H-J. Lignin and fiber digestion. J Range Manage. 2001;54:420–30.
Article
Google Scholar
Kondo T, Hiroi T, Mizuno K, Kato T. Characterization of lignin–carbohydrate complexes of Italian ryegrass and alfalfa. Can J Plant Sci. 1990;70:193–201.
Article
CAS
Google Scholar
Peng H, Luo Q, Ruan R, Zhang J, Liu Y. Structural features of lignin and lignin–carbohydrate complexes from bamboo (Phyllostachys pubescens Mazel). BioResources. 2014;9(1):1276–89.
Google Scholar
Azuma J-I, Koshijima T. Lignin–carbohydrate complexes from various sources. Methods Enzymol. 1988;161:12–8.
Article
CAS
Google Scholar
Sipponen MH, Lapierre C, Mechin V, Baumberger S. Isolation of structurally distinct lignin–carbohydrate fractions from maize stem by sequential alkaline extractions and endoglucanase treatment. Bioresour Technol. 2013;133:522–8.
Article
CAS
PubMed
Google Scholar
Zikeli F, Ters T, Fackler K, Srebotnik E, Li J. Wheat straw lignin fractionation and characterization as lignin–carbohydrate complexes. Ind Crop Prod. 2015;85:309–17.
Article
CAS
Google Scholar
Rio J, Prinsen P, Cadena EM, Martinez AT, Gutierrez A, Rencoret J. Lignin–carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process. Planta. 2016;243(5):1143–58.
Article
PubMed
CAS
Google Scholar
Lawoko M, Berggren R, Berthold F, Henriksson G, Gellerstedt G. Changes in the lignin–carbohydrate complex in softwood kraft pulp during kraft and oxygen delignification. Holzforschung. 2004;58:603–10.
Article
CAS
Google Scholar
Tunc MS, Lawoko M, van Heininggen A. Understanding the limitation of removal of hemicelluloses during autohydrolysis of a mixture of southern hardwoods. BioResources. 2010;5(1):356–71.
CAS
Google Scholar
Tamminen T, Vuorinen T, Tenkanen M, Hausalo T, Hortling B. Analysis of lignin and lignin–carbohydrate complexes isolated from black liquor. In: 8th ISWPC, Helsinki, 6–9 June, vol II. Jyvaskyla: Gummerus Kirjapaino Oy; 1995. p. 297–302.
Fatehi P, Gao W, Sun Y, Dashtban M. Acidification of prehydrolysis liquor and spent liquor of natural sulfite semichemical pulping process. Bioresour Technol. 2016;218:518–25.
Article
CAS
PubMed
Google Scholar
Tarasov D, Leitch M, Fatehi P. Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation. Cellulose. 2018;25(2):1377–93.
Article
CAS
Google Scholar
Zhao H, Feng Q, Xie Y, Li J, Chen X. Preparation of biocompatible hydrogel from lignin–carbohydrate complex (LCC) as cell carriers. BioResources. 2017;12(4):8490–504.
CAS
Google Scholar
Zhang L, Gellerstedt G. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn Reson Chem. 2007;45:37–45.
Article
CAS
PubMed
Google Scholar
Chen X, Li H, Sun S, Cao X, Sun R. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Sci Rep. 2016;6:1–9.
Article
CAS
Google Scholar
Nassar MM, MacKay GDM. Mechanism of thermal decomposition of lignin. Wood Fiber Sci. 1984;16(3):441–53.
CAS
Google Scholar
Singh R, Singh S, Trimukhe KD, Pandare KV, Bastawade KB, Gokhale DV, Varma AJ. Lignin–carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr Polym. 2005;62:57–66.
Article
CAS
Google Scholar
Hatakeyama H, Hatakeyama T. Thermal properties of isolated and in situ lignin. In: Heitner C, Dimmel D, Schmidt J, editors. Lignin and lignas advances in chemistry. Boca Raton: CRC Press, Taylor & Francis Group; 2010. p. 301–19.
Chapter
Google Scholar
Trajano HL, Engle NL, Foston M, Ragauskas AJ, Tschaplinski TJ, Wyman CE. The fate of lignin during hydrothermal pretreatment. Biotechol Biofuels. 2013;6:110–27.
Article
CAS
Google Scholar
Stokke DD, Wu Q, Han G. Consolidation behavior of lignocellulosic materials. In: Stokke DD, Wu Q, Han G, editors. Introduction of wood and natural fiber composites. Chichester: Wiley; 2014. p. 85–127.
Google Scholar
Youssefian S, Rahbar N. Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep. 2015;5:1–13.
Article
Google Scholar
Lourencon TV, Hansel FA, da Silva TA, et al. Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Sep Purif Technol. 2015;154:82–8.
Article
CAS
Google Scholar
Koshijima T, Watanabe T, Yaku F. Structure and properties of the lignin–carbohydrate complex polymer as an amphipathic substance. In: Glasser G, Sarkanen S, editors. ACS Symposium Series 397. Washington DC: American Chemical Society; 1989. p. 11–28.
Google Scholar
Merewether J, Samsuzzaman L, Calder I. Studies on a lignin–carbohydrate complex. Part II: characterization of the water-soluble lignin–carbohydrate complex. Holzforschung. 1972;26(5):180–5.
Article
CAS
Google Scholar
Nanbu T, Shimada J, Kobayashi M, Hirano K, Koh T, Machino M, Ohno H, Yamamoto M, Sakagami H. Anti-UV activity of lignin–carbohydrate complex and related compounds. Vivo. 2013;27(1):133–9.
CAS
Google Scholar
Sakagami H, Sheng H, Okudaira N, et al. Prominent anti-UV activity and possible cosmetic potential of lignin–carbohydrate complex. In Vivo. 2016;30:331–40.
CAS
PubMed
Google Scholar
Kato T, Hino S, Horie N, Shimoyama T, Kaneko T, Kusama K, Sakagami H. Anti-UV activity of Kampo medicines and constituent plant extracts: re-evaluation with skin keratinocyte system. Vivo. 2014;28(4):571–8.
Google Scholar
Ueki J, Sakagami H, Wakabayashi H. Anti-UV activity of newly-synthesized water-soluble azulenes. Vivo. 2013;27(1):119–26.
Google Scholar
Gray KR, King EG, Brauns F, Hibbert H. Studies on lignin and related compounds: XIII the structure and properties or glycol lignin. Can J Res. 1935;13(B):35–47.
Article
Google Scholar
Merewether JWT, Lignin XII. The isolation of lignin by alcoholysis in the absence of air. Holzforschung. 1954;8(4):116–23.
Article
CAS
Google Scholar
Traynard P, Ayround AM, Eymery A. Existence d’une liaison lignine-hydrates de carbone dans le bois. Assoc Tech Ind Papetiere Bull. 1953;2:45–52.
Google Scholar
Björkman A. Isolation of lignin from finely divided wood with neutral solvents. Nature. 1954;174:1057–8.
Article
Google Scholar
Björkman A. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstidn. 1956;59:477–85.
Google Scholar
Holtman K, Chang H, Jameel H, Kadla JF. Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol. 2006;26:21–34.
Article
CAS
Google Scholar
Watanabe T, Azyma J, Koshijima T. A convenient method for preparing lignin–carbohydrate complex from Pinus densiflora wood. Mokuzai Gakkaishi. 1987;33:798–803.
CAS
Google Scholar
Lawoko M, Henriksson G, Gellerstedt G. Characterization of lignin–carbohydrate complex (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung. 2006;60:156–61.
CAS
Google Scholar
Du X, Gellerstedt G, Li J. Universal fractionation of lignin–carbohydrate complexes (LCC) from lignocellulosic biomass: an example using spruce wood. Plant J. 2013;74(2):328–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iversen T. Lignin–carbohydrate bonds in a lignin–carbohydrate complex isolated from spruce. Wood Sci Technol. 1985;19:243–51.
Article
CAS
Google Scholar
Azuma J-I, Nomura T, Koshijima T. Lignin–carbohydrate complexes containing phenolic acids isolated from the clums of bamboo. Agric Biol Chem. 1985;49(9):2661–9.
CAS
Google Scholar
Obst J. Frequency and alkali resistance of lignin–carbohydrate bonds in wood. Tappi. 1982;65(4):109–12.
CAS
Google Scholar
Bolker HI. A lignin carbohydrate bond as revealed by infra-red spectroscopy. Nature. 1963;197:489–90.
Article
CAS
Google Scholar
Eriksson O, Lindgren BO. About the linkage between lignin and hemicelluloses in wood. Svensk Papperstidn. 1977;80:59–63.
CAS
Google Scholar
Dryhurst G. Periodate oxidation in structural studies. In: Dryhurst G, editor. Periodate oxidation of diol and other functional groups: analytical and structural applications. London: Elsevier; 2015. p. 75–116.
Google Scholar
Yaku F, Tanaka R, Koshijima T. Lignin carbohydrate complex. Part IV. Lignin as side chain of the carbohydrate in Björkaman LCC. Holzforschung. 1981;35:177–81.
Article
CAS
Google Scholar
Sunner H, Charavgi MD, Olsson L, Topakas E, Christakopoulos P. Glucuronoyl esterase screening and characterization assays utilizing commercially available benzyl glucuronic acid ester. Molecules. 2015;20(10):17807–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crepin VF, Faulds CB, Connerton IF. Functional classification of the microbial feruloyl esterases. Apll Microbiol Biotechnol. 2004;63:647–52.
Article
CAS
Google Scholar
Lindgren BO. The lignin–carbohydrate linkage. Acta Chem Scand. 1958;12:447–52.
Article
CAS
Google Scholar
Lubran M. Paper electrophoresis. JAMA. 1966;197(5):360–1.
Article
CAS
PubMed
Google Scholar
Fritsch RJ, Krause I. Electrophoresis. In: Caballero B, Finglas P, Toldra F, editors. Encyclopedia of food sciences and nutrition. 2nd ed. San Diego: Elsevier; 2003. p. 2055–62.
Chapter
Google Scholar
Azuma J-I, Takahashi N, Koshijima T. Isolation and characterisation of lignin–carbohydrate complexes from the milled-wood lignin fraction of Pinus densiflora sieb. et zucc. Carbohydr Res. 1981;93(1):91–104.
Article
CAS
Google Scholar
Jay A. The methylation reaction in carbohydrate analysis. J Carbohydr Chem. 1996;15(8):897–923.
Article
CAS
Google Scholar
Hanisch F-G. Methylation analysis of complex carbohydrates: overview and critical comments. Biol Mass Spectrom. 1994;23:309–12.
Article
CAS
PubMed
Google Scholar
Laine C, Tamminen T, Vikkula A, Vuorinen T. Methylation analysis as a tool for structural analysis of wood polysaccharides. Holzforschung. 2002;56:607–14.
Article
CAS
Google Scholar
Laine C, Tamminen T, Hortling B. Carbohydrate structures in residual lignin–carbohydrate complex of spruce and pine pulp. Holzforschung. 2004;58:611–21.
CAS
Google Scholar
Morrison I. Structural investigations on the lignin–carbohydrate complexes of Lolium perenne. Biochem J. 1974;139(1):197–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem. 1964;55:205–8.
CAS
PubMed
Google Scholar
Ciucane I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 1984;131:209–17.
Article
Google Scholar
Watanabe T, Kaizu S, Koshjima T. Binding sites of carbohydrate moieties toward lignin in “lignin–carbohydrate complex” from Pinus densiflora wood. Chem Letters. 1986;15(11):1871–4.
Article
Google Scholar
Koshijima T, Watanabe T, Azuma J-I. Existence of benzylated carbohydrate moiety in lignin–carbohydrate complex from pine wood. Chem Letters. 1984;13(10):1737–40.
Article
Google Scholar
Prehm P. Methylation of carbohydrates by methyl trifluoromethanesulfonate in trimethyl phosphate. Carboh Res. 1980;78(2):372–4.
Article
CAS
Google Scholar
Watanabe T, Koshijima T. Evidence for an ester linkage between lignin and glucuronic acid in lignin–carbohydrate complexes by DDQ-oxidation. Agric Biol Chem. 1988;52(11):2953–5.
CAS
Google Scholar
Nagy M, Kosa M, Theliander H, Ragauskas. Characterization of CO2 precipitated Kraft lignin to promote its utilization. Green Chem. 2010;12:31–4.
Article
CAS
Google Scholar
Ma M-G, Jia N, Zhu J-F, Li S-M, Peng F, Sun R-C. Isolation and characterization of hemicelluloses extracted by hydrothermal pretreatment. Bioresour Technol. 2012;114:677–83.
Article
CAS
PubMed
Google Scholar
Shashidher B, Bajjuri R, Guguloath V. Formation and trapping of benzyne. Pharm Anal Acta. 2011;2(7):137–44.
Article
CAS
Google Scholar
Uraki Y, Usukura Y, Kishimoto T, Ubukata M. Amphiphilicity of a lignin–carbohydrate complex. Holzforschung. 2006;60:659–64.
Article
CAS
Google Scholar
Yuan T-Q, Sun S-N, Xu F, Sun RC. Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem. 2011;59(19):10604–14.
Article
CAS
PubMed
Google Scholar
Ralph J, Landucci L. NMR of lignins. In: Heitner C, Dimmel D, Schmidt J, editors. Lignin and lignas: advances in chemistry. Boca Raton: CRC Press, Taylor & Francis Group; 2010. p. 137–244.
Chapter
Google Scholar
Balakshin M, Capanema E, Chen C-L, Gracz HS. Elucidation of the structures of residual and dissolved pine kraft lignins using an 2D HMQC NMR technique. J Agric Food Chem. 2003;51:6116–27.
Article
CAS
PubMed
Google Scholar
Skurikin IM. Investigation of lignin and tannisn of cognac alcohol by means of applying IR, UV and NMR spectroscopy methods. Prikl Biokhim Microbiol. 1968;4:113–9.
Google Scholar
Kosikova B, Polcin J, Joniak D. NMR studies on lignin–carbohydrate complexes. Holzforschung. 1973;27:59–64.
Article
CAS
Google Scholar
Freudenberg K, Neish AC. Constitution and biosynthesis of lignin. New York: Springer; 1968. p. 69–74.
Book
Google Scholar
Pu Y, Hallac B, Ragauskas A. Plant biomass characterization: Application of solution- and solid-state NMR spectroscopy. In: Wyman CE, editor. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Chichester: Wiley; 2013. p. 369–90.
Chapter
Google Scholar
You T, Xu F. Applications of molecular spectroscopic methods to elucidation of lignin structure. In: Stauffer MT, editor. Applications of molecular spectroscopy to current research in the chemical and biological science. InTech: New York; 2016. p. 235–60.
Google Scholar
Xie Y, Yasuda S, Wu H, Liu H. Analysis of the structure of lignin–carbohydrate complexes by the specific 13C tracer method. J Wood Sci. 2000;46:130–6.
Article
CAS
Google Scholar
Barakat A, Winter H, Rondeau-Mouro C, Saake B, Chabbet B, Cathala B. Studies of xylan interactions and cross-linking to synthetic lignins formed by bulk and end-wise polymerization: a model study of lignin carbohydrate complex formation. Planta. 2007;226:267–81.
Article
CAS
PubMed
Google Scholar
Zhang L, Gellerstedt G. NMR observation of a new lignin structure, a spiro-dienone. Chem Commun. 2001;24:2744–5.
Article
CAS
Google Scholar
Min D-Y, Li Q, Chiang V, Jameel H, Chang H-M. Lucia L. The influence of lignin–carbohydrate complexes on the cellulase-mediated saccharification I: transgenic black cottonwood (western balsam poplar, California poplar) P. trichocarpa including the xylan down-regulated and the lignin down-regulated lines. Fuel. 2014;119:207–13.
Article
CAS
Google Scholar
Evtuguin D, Goodfellow B, Neto CP, Terashima N. Characterization of lignin–carbohydrate linkages in Eucalyptus globulus by 2D/3D NMR spectroscopy using specific carbon-13 labelling technique. Appita Annual Conf. 2005;2:439–44.
Google Scholar
Ammalahti E, Brunow G, Bardet M, Robert D, Kilpelainen I. Indetification of side-chin structures in a poplar lignin using three-dimensional HMQC-HOHAHA NMR spectroscopy. J Agric Food Chem. 1998;46:5113–7.
Article
Google Scholar
Liitia T, Maunu SL, Hortling B, Toikka M, Kilpelainen I. Analysis of technical lignins by two- and three-dimensional NMR spectroscopy. J Agric Food Chem. 2003;51:2136–43.
Article
PubMed
CAS
Google Scholar
Griffin JL, Keun H, Richter C, Moskau D, Rae C, Nicholson JK. Compartmentation of metabolism probed by [2-13C]alanine: improved 13C NMR sensitivity using a CryoProbe detects evidence of a glial metabolon. Neurochem Int. 2003;42(1):93–9.
Article
CAS
PubMed
Google Scholar
Wen J-L, Sun S-L, Xue B-L, Sun R-C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials. 2013;6:359–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goger MJ, McDonnell JM, Cowburn D. Using cryoprobes to decrease acquisition times of triple-resonance experiments used for protein resonance assignment. Spectroscopy. 2003;17:161–7.
Article
CAS
Google Scholar
Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep. 2018;8:6538.
Article
PubMed
PubMed Central
Google Scholar
Sette M, Wechselberger R, Crestini C. Elucidation of lignin structure by quantitative 2D NMR. Chem Eur J. 2011;17:9529–35.
Article
CAS
PubMed
Google Scholar
Wen J-L, Cue B-L, Xu F, Sun R-C. Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique. Bioenerg Res. 2012;5:886–903.
Article
CAS
Google Scholar
Ibarra D, Chavez MI, Rencoret J, Martinez AT, et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis–gas chromatography/mass spectrometry study. J Agric Food Chem. 2007;55(9):3477–90.
Article
CAS
PubMed
Google Scholar
Vinardell MP, Mitjans M. Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci. 2017;18:1219–34.
Article
PubMed Central
Google Scholar
Zhang Y, But PP, Ooi VE, Xu HX, Delaney GD, Lee SH, Lee SF. Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin–carbohydrate complex from Prunella vulgaris. Antivir Res. 2007;75:242–9.
Article
CAS
PubMed
Google Scholar
Sakagami H, Kushida T, Oizumi T, Nakashima H, Makino T. Distribution of lignin–carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol Ther. 2010;128:91–105.
Article
CAS
PubMed
Google Scholar
Lee J-B, Yamagishi C, Hayashi K, Hayashi T. Antiviral and immunostimulating effects of lignin–carbohydrate–protein complexes from Pimpinella ansum. Biosci Biotechnol Biochem. 2011;75(3):459–65.
Article
CAS
PubMed
Google Scholar
Kai D, Ren W, Tian L, Chee PL, Liu Y, Ramakrishna S, Loh XJ. Engineering poly(lactide)-lignin nanofibers with antioxidant activity fro biomedical application. ACS Sust Chem Eng. 2016;4(10):5268–76.
Article
CAS
Google Scholar
Erakovic S, Veljovic D, Diouf PN, Stevanovic T, Mitric M. Electrophoretic deposition of biocomposite lignin/hydroxyapatite coatings on titanium. Int J Chem Reactor Eng. 2009;7(1):113–30.
Article
Google Scholar
Zhao H, Li J, Wang P, Zeng S, Xie Y. Lignin–carbohydrate complexes based spherical bio-carriers: preparation, characterization and biocompability. Int J Polym Sci. 2017;207:1–10.
Article
Google Scholar
Fliermans CB. Biocarrier composition for and method of degrading pollutants. Patent No. US-A8296261. 1996.