Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R. Hemicelluloses for fuel ethanol: a review. Bioresour Technol. 2010;101(13):4775–800.
Article
PubMed
CAS
Google Scholar
Brumm PJ, De Maayer P, Mead DA, Cowan DA. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies. Front Microbiol. 2015;6:430.
Article
PubMed
PubMed Central
Google Scholar
Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 2005;29(1):3–23.
Article
CAS
PubMed
Google Scholar
Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A. Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crops Prod. 2013;44:306–14.
Article
CAS
Google Scholar
Beg Q, Kapoor M, Mahajan L, Hoondal G. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001;56(3–4):326–38.
Article
CAS
PubMed
Google Scholar
Hatfield RD, Rancour DM, Marita JM. Grass cell walls: a story of cross-linking. Front Plant Sci. 2017;7:2056.
Article
PubMed
PubMed Central
Google Scholar
Busse-Wicher M, Gomes TC, Tryfona T, Nikolovski N, Stott K, Grantham NJ, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 2014;79(3):492–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busse-Wicher M, Li A, Silveira RL, Pereira CS, Tryfona T, Gomes TC, et al. Evolution of xylan substitution patterns in gymnosperms and angiosperms: implications for xylan interaction with cellulose. Plant Physiol. 2016;171(4):2418–31.
CAS
PubMed
PubMed Central
Google Scholar
Tarasov D, Leitch M, Fatehi P. Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels. 2018;11(1):269.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep. 2018;8(1):1–11.
Article
CAS
Google Scholar
Dodd D, Cann IK. Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy. 2009;1(1):2–17.
Article
CAS
PubMed
Google Scholar
Jönsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresor Technol. 2016;199:103–12.
Article
CAS
Google Scholar
Bajaj P, Mahajan R. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol. 2019;103(21–22):8711–24.
Article
CAS
PubMed
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42(D1):D490–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, et al. Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun. 2015;6:1–6.
Article
CAS
Google Scholar
Heinze S, Mechelke M, Kornberger P, Liebl W, Schwarz WH, Zverlov VV. Identification of endoxylanase XynE from Clostridium thermocellum as the first xylanase of glycoside hydrolase family GH141. Sci Rep. 2017;7(1):11178.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao H, Zheng H, Li S, Wei Z, Mei X, Ma H, et al. Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep. 2015;5:12631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol. 2019;103(21–22):8763–84.
PubMed
Google Scholar
Wang W, Wei H, Alahuhta M, Chen X, Hyman D, Johnson DK, et al. Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica. PLoS ONE. 2014;9(12):e111443.
Article
PubMed
PubMed Central
CAS
Google Scholar
Terrett OM, Dupree P. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotechnol. 2019;56:97–104.
Article
CAS
PubMed
Google Scholar
Lawoko M, Henriksson G, Gellerstedt G. Structural differences between the lignin–carbohydrate complexes present in wood and in chemical pulps. Biomacromol. 2005;6(6):3467–73.
Article
CAS
Google Scholar
Henriksson G, Lawoko M, Martin MEE, Gellerstedt G. Lignin-carbohydrate network in wood and pulps: a determinant for reactivity. Holzforschung. 2007;61(6):668–74.
Article
CAS
Google Scholar
Deshpande R, Giummarella N, Henriksson G, Germgård U, Sundvall L, Grundberg H, et al. The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood. Ind Crops Prod. 2018;115:315–22.
Article
CAS
Google Scholar
Balan V, Sousa LC, Chundawat SP, Marshall D, Sharma LN, Chambliss CK, et al. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog. 2009;25(2):365–75.
Article
CAS
PubMed
Google Scholar
Marcia MdO. Feruloylation in grasses: current and future perspectives. Mol Plant. 2009;2(5):861–72.
Article
CAS
Google Scholar
Lyczakowski JJ, Wicher KB, Terrett OM, Faria-Blanc N, Yu X, Brown D, et al. Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnol Biofuels. 2017;10(1):224.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hunt CJ, Antonopoulou I, Tanksale A, Rova U, Christakopoulos P, Haritos VS. Insights into substrate binding of ferulic acid esterases by arabinose and methyl hydroxycinnamate esters and molecular docking. Sci Rep. 2017;7(1):17315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ronning DR, Klabunde T, Besra GS, Vissa VD, Belisle JT, Sacchettini JC. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat Struct Mol Biol. 2000;7(2):141.
Article
CAS
Google Scholar
Santi C, Gani OA, Helland R, Williamson A. Structural insight into a CE15 esterase from the marine bacterial metagenome. Sci Rep. 2017;7(1):17278.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dilokpimol A, Mäkelä MR, Cerullo G, Zhou M, Varriale S, Gidijala L, et al. Fungal glucuronoyl esterases: genome mining based enzyme discovery and biochemical characterization. New Biotechnol. 2018;40:282–7.
Article
CAS
Google Scholar
Arnling Bååth J, Giummarella N, Klaubauf S, Lawoko M, Olsson L. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Lett. 2016;590(16):2611–8.
Article
PubMed
CAS
Google Scholar
Bååth JA, Mazurkewich S, Knudsen RM, Poulsen J-CN, Olsson L, Leggio LL, et al. Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnol Biofuels. 2018;11(1):213.
Article
CAS
Google Scholar
Pokkuluri PR, Duke N, Wood SJ, Cotta MA, Li XL, Biely P, et al. Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina. Proteins. 2011;79(8):2588–92.
Article
CAS
PubMed
Google Scholar
Charavgi M-D, Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED. The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst. Acta Crystallogr D Biol Crystallogr. 2013;69(1):63–73.
Article
CAS
PubMed
Google Scholar
Špániková S, Biely P. Glucuronoyl esterase–novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett. 2006;580(19):4597–601.
Article
PubMed
CAS
Google Scholar
Hüttner S, Klaubauf S, de Vries RP, Olsson L. Characterisation of three fungal glucuronoyl esterases on glucuronic acid ester model compounds. Appl Microbiol Biotechnol. 2017;101:1–11.
Article
CAS
Google Scholar
Hatakka A, Viikari L. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol. 2014;88:103–65.
Article
PubMed
CAS
Google Scholar
Vafiadi C, Topakas E, Biely P, Christakopoulos P. Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett. 2009;296(2):178–84.
Article
CAS
PubMed
Google Scholar
Blumer-Schuette SE, Lewis DL, Kelly RM. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol. 2010;76(24):8084–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bayer EA, Belaich J-P, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 2004;58:521–54.
Article
CAS
PubMed
Google Scholar
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, De Groot R, Kuo A, et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol. 2017;2(8):17087.
Article
CAS
PubMed
Google Scholar
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol. 2017;15(2):83–95.
Article
CAS
PubMed
Google Scholar
Thomas L, Joseph A, Gottumukkala LD. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Bioresource technology. 2014;158:343–50.
Article
CAS
PubMed
Google Scholar
Hu BB, Zhu MJ. Reconstitution of cellulosome: research progress and its application in biorefinery. Biotechnol Appl Biochem. 2019;66(5):720–30.
Article
CAS
PubMed
Google Scholar
Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci. 2014;111(25):9109–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol. 2013;31(10):581–93.
Article
CAS
PubMed
Google Scholar
Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, et al. Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science. 2013;342(6165):1513.
Article
CAS
PubMed
Google Scholar
Zurawski JV, Blumer-Schuette SE, Conway JM, Kelly RM. The extremely thermophilic genus Caldicellulosiruptor: physiological and genomic characteristics for complex carbohydrate conversion to molecular hydrogen. Berlin: Springer; 2014. p. 177–95.
Google Scholar
Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, et al. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol. 2012;194(15):4015–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol. 2019;280:478–88.
Article
CAS
PubMed
Google Scholar
Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM, Ahring BK. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Evol Microbiol. 1999;49(3):991–6.
Article
CAS
Google Scholar
Brunecky R, Chung D, Sarai NS, Hengge N, Russell JF, Young J, et al. High activity CAZyme cassette for improving biomass degradation in thermophiles. Biotechnol Biofuels. 2018;11(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology. 2000;146(6):1391–7.
Article
CAS
PubMed
Google Scholar
Conway JM, Pierce WS, Le JH, Harper GW, Wright JH, Tucker AL, et al. Multidomain, surface layer-associated glycoside hydrolases contribute to plant polysaccharide degradation by Caldicellulosiruptor Species. J Biol Chem. 2016;291(13):6732–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
d’Errico C, Jørgensen JO, Krogh KB, Spodsberg N, Madsen R, Monrad RN. Enzymatic degradation of lignin-carbohydrate complexes (LCCs): model studies using a fungal glucuronoyl esterase from Cerrena unicolor. Biotechnol Bioeng. 2015;112(5):914–22.
Article
PubMed
CAS
Google Scholar
d’Errico C, Börjesson J, Ding H, Krogh KB, Spodsberg N, Madsen R, et al. Improved biomass degradation using fungal glucuronoyl—esterases—hydrolysis of natural corn fiber substrate. J Biotechnol. 2016;219:117–23.
Article
PubMed
CAS
Google Scholar
Mazurkewich S, Poulsen JCN, Leggio LL, Larsbrink J. Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components. J Biol Chem. 2019;294(52):19978–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunner H, Charavgi M-D, Olsson L, Topakas E, Christakopoulos P. Glucuronoyl esterase screening and characterization assays utilizing commercially available benzyl glucuronic acid ester. Molecules. 2015;20(10):17807–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell J, Kim S-K, Duma J, Nothaft H, Himmel ME, Bomble YJ, et al. Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose. Biotechnol Biofuels. 2018;11(1):259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, et al. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS ONE. 2015;10(3):e0119508.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bonzom C, Hüttner S, Mirgorodskaya E, Chong S-L, Uthoff S, Steinbüchel A, et al. Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express. 2019;9(1):126.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ali MK, Hayashi H, Karita S, Goto M, Kimura T, Sakka K, et al. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci Biotechnol Biochem. 2001;65(1):41–7.
Article
CAS
PubMed
Google Scholar
Conway JM, McKinley BS, Seals NL, Hernandez D, Khatibi PA, Poudel S, et al. Functional analysis of the glucan degradation locus in Caldicellulosiruptor bescii reveals essential roles of component glycoside hydrolases in plant biomass deconstruction. Appl Environ Microbiol. 2017;83(24):e01828–917.
Article
PubMed
PubMed Central
Google Scholar
Dias FM, Goyal A, Gilbert HJ, Prates JA, Ferreira LM, Fontes CM. The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium thermocellum is not a thermostabilizing domain. FEMS Microbiol Lett. 2004;238(1):71–8.
CAS
PubMed
Google Scholar
Ali E, Zhao G, Sakka M, Kimura T, Ohmiya K, Sakka K. Functions of family-22 carbohydrate-binding module in Clostridium thermocellum Xyn10C. Biosci Biotechnol Biochem. 2005;69(1):160–5.
Article
CAS
PubMed
Google Scholar
Liu X, Liu T, Zhang Y, Xin F, Mi S, Wen B, et al. Structural insights into the thermophilic adaption mechanism of endo-1, 4-β-Xylanase from Caldicellulosiruptor owensensis. J Agric Food Chem. 2017;66(1):187–93.
Article
PubMed
CAS
Google Scholar
Mangan D, Cornaggia C, Liadova A, McCormack N, Ivory R, McKie VA, et al. Novel substrates for the automated and manual assay of endo-1, 4-β-xylanase. Carbohyd Res. 2017;445:14–22.
Article
CAS
Google Scholar
Daas MJ, Martínez PM, van de Weijer AH, van der Oost J, de Vos WM, Kabel MA, et al. Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12. BMC Biotechnol. 2017;17(1):44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie H, Gilbert HJ, Charnock SJ, Davies GJ, Williamson MP, Simpson PJ, et al. Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry. 2001;40(31):9167–76.
Article
CAS
PubMed
Google Scholar
Kmezik C, Bonzom C, Olsson L, Mazurkewich S, Larsbrink J. Multimodular fused acetyl-feruloyl esterase from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Biotechnol Biofuels. 2020;13(1):60.
Article
PubMed
PubMed Central
Google Scholar
Yi Z, Su X, Revindran V, Mackie RI, Cann I. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS ONE. 2013;8(12):e84172.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sockolosky JT, Szoka FC. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr Purif. 2013;87(2):129–35.
Article
CAS
PubMed
Google Scholar
Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas’ AF, Gilmanshin RI. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991;31(1):119–28.
Article
CAS
PubMed
Google Scholar
Lee P-H, Huang XX, Teh BT, Ng L-M. TSA-CRAFT: a free software for automatic and robust thermal shift assay data analysis. SLAS Discov. 2019;24(5):606–12.
CAS
PubMed
PubMed Central
Google Scholar