Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Lewis Liu Z, Gorsich SW. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3(1):2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol Int Res Process Environ Clean Technol. 2007;82(4):340–9.
CAS
Google Scholar
Alriksson B, Cavka A, Jönsson LJ. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Biores Technol. 2011;102(2):1254–63.
Article
CAS
Google Scholar
Akache B, MacPherson S, Sylvain MA, Turcotte B. Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. J Biol Chem. 2004;279(27):27855–60.
Article
CAS
PubMed
Google Scholar
Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF. Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 2017;10:52–61.
Google Scholar
Banat IM, Nigam P, Singh D, Marchant R, McHale AP. Ethanol production at elevated temperatures and alcohol concentrations: Part I-Yeasts in general. World J Microbiol Biotechnol. 1998;14(6):809–21.
Article
CAS
Google Scholar
Banerjee N, Bhatnagar R, Viswanathan L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol. 1981;11(4):226–31.
Article
CAS
Google Scholar
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media; 2009.
Berry DR, Russell I, Stewart GC. Yeast biotechnology. Berlin: Springer Science & Business Media; 2012.
Google Scholar
Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J. A global protein kinase and phosphatase interaction network in yeast. Science. 2010;328(5981):1043–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown JA, Sherlock G, Myers CL, Burrows NM, Deng C, Wu HI, McCann KE, Troyanskaya OG, Brown JM. Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol. 2006;2(1):2006–0001.
Article
PubMed
PubMed Central
Google Scholar
Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe TY, Schroeder M, Weng S, Botstein D. SGD: Saccharomyces genome database. Nucleic Acids Res. 1998;26(1):73–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol. 2018;102(10):4589–600.
Article
CAS
PubMed
Google Scholar
De Boer CG, Hughes TR. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res. 2012;40(D1):D169–79.
Article
PubMed
CAS
Google Scholar
Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Abt TD, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Verplaetse A. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels. 2013;6(1):89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudley AM, Janse DM, Tanay A, Shamir R, Church GM. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol. 2005;1(1):2005–0001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microbial Technol. 2008;43(2):120–3.
Article
CAS
Google Scholar
Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol. 2013;2(10):604–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337(1):95–103.
Article
CAS
PubMed
Google Scholar
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol Biofuels. 2020;13(1):1–23.
Article
CAS
Google Scholar
Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res. 2006;6(5):744–50.
Article
CAS
PubMed
Google Scholar
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418(6896):387–91.
Article
CAS
PubMed
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5.
Article
CAS
PubMed
Google Scholar
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):31–4.
Article
CAS
PubMed
Google Scholar
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandmann O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A Stat Soc. 2011;174:245–6.
Article
Google Scholar
Gonçalves E, Nakic ZR, Zampieri M, Wagih O, Ochoa D, Sauer U, Beltrao P, Saez-Rodriguez J. Systematic analysis of transcriptional and post-transcriptional regulation of metabolism in yeast. PLoS Comput Biol. 2017;13(1):e1005297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goto GH, Mishra A, Abdulle R, Slaughter CA, Kitagawa K. Bub1-mediated adaptation of the spindle checkpoint. PLoS Genet. 2011;7(1):e1001282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartwell LH, Culotti J, Reid B. Genetic control of the cell-division cycle in yeast, I. Detection of mutants. Proc Natl Acad Sci. 1970;66(2):352–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasunuma T, Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 2012;47(9):1287–94.
Article
CAS
Google Scholar
Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE. 2014;9(6):e98679.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaffe M, Dziulko A, Smith JD, Onge RPS, Levy SF, Sherlock G. Improved discovery of genetic interactions using CRISPRiSeq across multiple environments. Genome Res. 2019;29(4):668–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jann C, Johansson A, Smith JD, Parts L, Steinmetz LM. Gene dosage screens in yeast reveal core signalling pathways controlling heat adaptation. bioRxiv. 2020. https://doi.org/10.1101/2020.08.26.267674.
Article
Google Scholar
Jansen ML, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris A, Klaassen P, Pronk JT. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res. 2017;17(5):fox044.
Article
PubMed Central
CAS
Google Scholar
Johansson E, Xiros C, Larsson C. Fermentation performance and physiology of two strains of Saccharomyces cerevisiae during growth in high gravity spruce hydrolysate and spent sulphite liquor. BMC Biotechnol. 2014;14(1):47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels. 2013;6(1):16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jöonsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16.
Article
CAS
Google Scholar
Keng T. HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1992;12(6):2616–23.
CAS
PubMed
PubMed Central
Google Scholar
Keweloh H, Weyrauch G, Rehm H-J. Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol. 1990;33(1):66–71.
Article
CAS
PubMed
Google Scholar
Kim D, Hahn JS. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol. 2013;79(16):5069–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koivistoinen OM, Kuivanen J, Barth D, Turkia H, Pitkänen JP, Penttilä M, Richard P. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Fact. 2013;12(1):82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 - an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Research. 2020;9:709.
Article
Google Scholar
Kolde, R. Package `pheatmap’. Bioconductor. 2012.
Kolde R. Pheatmap: Pretty Heatmaps R. Package. Bioconductor; CRAN-project.org/package=pheatmap; 2012.
Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels. 2012;5(1):32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koppram R, Olsson L. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels. 2014;7(1):54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuge S, Jones N, Nomoto A. Regulation of YAP-1 nuclear localization in response to oxidative stress. EMBO J. 1997;16(7):1710–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwast KE, Burke PV, Poyton RO. Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol. 1998;201(8):1177–95.
Article
CAS
PubMed
Google Scholar
Lardenois A, Becker E, Walther T, Law MJ, Xie B, Demougin P, Strich R, Primig M. Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Mol Genet Genomics. 2015;290(5):2031–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol. 1999;77(1–3):91–103.
Article
Google Scholar
Lippman SI, Broach JR. Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci. 2009;106(47):19928–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes DD, Rosa CA, Hector RE, Dien BS, Mertens JA, Ayub MAZ. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. J Ind Microbiol Biotechnol. 2017;44(11):1575–88.
Article
CAS
PubMed
Google Scholar
Martín C, Wu G, Wang Z, Stagge S, Jönsson LJ. Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Biores Technol. 2018;262:242–50.
Article
CAS
Google Scholar
McGlincy NJ, Meacham ZA, Swain K, Muller R, Baum R, Ingolia N. A genome-scale CRISPR interference guide library enables comprehensive phenotypic profiling in yeast. BiorXiv. 2020. https://doi.org/10.1101/2020.03.11.988105.
Article
Google Scholar
Momen-Roknabadi A, Oikonomou P, Tavazoie S. An inducible CRISPR-interference library for genetic interrogation of Saccharomyces cerevisiae biology. bioRxiv. 2020;3:1–2.
Google Scholar
Mülleder M, Capuano F, Pir P, Christen S, Sauer U, Oliver SG, Ralser M. A prototrophic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol. 2012;30(12):1176–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen TTM, Iwaki A, Ohya Y, Izawa S. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng. 2014;117(1):33–8.
Article
CAS
PubMed
Google Scholar
Ostergaard S, Olsson L, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2000;64(1):34–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okazaki S, Tachibana T, Naganuma A, Mano N, Kuge S. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Mol Cell. 2007;27(4):675–88.
Article
CAS
PubMed
Google Scholar
Pampulha M, Loureiro-Dias M. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol. 1989;31(5–6):547–50.
Article
CAS
Google Scholar
Pascual-Ahuir A, Posas F, Serrano R, Proft M. Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J Biol Chem. 2001;276(40):37373–8.
Article
CAS
PubMed
Google Scholar
Patel A, Arora N, Sartaj K, Pruthi V, Pruthi PA. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew Sustain Energy Rev. 2016;62:836–55.
Article
CAS
Google Scholar
Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production. Crit Rev Biotechnol. 2011;31(1):20–31.
Article
CAS
PubMed
Google Scholar
Pereira FB, Romaní A, Ruiz HA, Teixeira JA, Domingues L. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Biores Technol. 2014;161:192–9.
Article
CAS
Google Scholar
Pérez J, Munoz-Dorado J, De la Rubia TDLR, Martinez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002;5(2):53–63.
Article
PubMed
CAS
Google Scholar
Petersson A, Lidén G. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Biotech Lett. 2007;29(2):219–25.
Article
CAS
Google Scholar
Proft M, Serrano R. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol. 1999;19(1):537–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian W, Ma D, Xiao C, Wang Z, Zhang J. The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep. 2012;2(5):1399–410.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2018.
Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL. From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol. 2006;2(1):55–65.
Article
CAS
Google Scholar
Rep M, Proft M, Remize F, Tamás M, Serrano R, Thevelein JM, Hohmann S. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol. 2001;40(5):1067–83.
Article
CAS
PubMed
Google Scholar
Romaní A, Pereira F, Johansson B, Domingues L. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Biores Technol. 2015;179:150–8.
Article
CAS
Google Scholar
Sadowski I, Breitkreutz BJ, Stark C, Su TC, Dahabieh M, Raithatha S, Bernhard W, Oughtred R, Dolinski K, Barreto K, Tyers M. The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database. 2013. https://doi.org/10.1038/s42003-020-01452-9.
Article
PubMed
PubMed Central
Google Scholar
Sardi M, Rovinskiy N, Zhang Y, Gasch AP. Leveraging genetic-background effects in Saccharomyces cerevisiae to improve lignocellulosic hydrolysate tolerance. Appl Environ Microbiol. 2016;82(19):5838–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloerke B, Crowley J, Cook D, Hofmann H, Hadley W, Briatte F, Marbach M, Thoen E, Elberg A, Larmarange J. GGally: Extension to ‘ggplot2’. R Package version 1.3.2 https://CRAN.R-project.org/package=GGally. 2017.
Skerker JM, Leon D, Price MN, Mar JS, Tarjan DR, Wetmore KM, Deutschbauer AM, Baumohl JK, Bauer S, Ibánez AB, Mitchell VD. Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Mol Syst Biol. 2013;9(1):674.
Article
PubMed
PubMed Central
Google Scholar
Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, Onge RPS. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol. 2016;17(1):45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith JD, Schlecht U, Xu W, Suresh S, Horecka J, Proctor MJ, Aijar R, Bennet RAO, Chu A, Li YF, Roy K, Davis RW, Steinmetz LM, Hyman RW, Levy SF, Onge RPS. A method for high-throughput production of sequence-verified DNA libraries and strain collections. Mol Syst Biol. 2017;13(2):913.
Article
PubMed
PubMed Central
CAS
Google Scholar
Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28(18):3442–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soudham VP, Brandberg T, Mikkola JP, Larsson C. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Biores Technol. 2014;166:559–65.
Article
CAS
Google Scholar
Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol. 2002;83(1):1–11.
Article
CAS
Google Scholar
Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol. 2009;20(3):300–6.
Article
PubMed
CAS
Google Scholar
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS ONE. 2019;14(5):e0212389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willför S, Holmbom B. Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci Technol. 2004;38(3):173–9.
Article
CAS
Google Scholar
Wu G, Xu Z, Jönsson LJ. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion. Microb Cell Fact. 2017;16(1):199.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu JY, Pan XJ, Wang GS, Gleisner R. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Biores Technol. 2009;100(8):2411–8.
Article
CAS
Google Scholar
Zitomer RS, Lowry CV. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1992;56(1):1–11.
CAS
Google Scholar