Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219–22.
Article
CAS
Google Scholar
Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A. 2011;108(37):15079–84.
Article
CAS
Google Scholar
Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol. 2017;13(10):1123–8.
Article
CAS
Google Scholar
Chylenski P, Bissaro B, Sørlie M, Røhr ÅK, Várnai A, Horn SJ, et al. Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catal. 2019;9(6):4970–91.
Article
CAS
Google Scholar
Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50(D1):D571–7.
Article
CAS
Google Scholar
Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin J-G, et al. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol. 2013;79(2):488–96.
Article
CAS
Google Scholar
Chen C, Chen J, Geng Z, Wang M, Liu N, Li D. Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Biotechnol Biofuels. 2018;11(1):1–16.
Article
Google Scholar
Hüttner S, Várnai A, Petrovic D, Bach CX, Kim Anh DT, Thanh VN, et al. Specific xylan activity revealed for AA9 Lytic polysaccharide monooxygenases of the thermophilic fungus Malbranchea cinnamomea by functional characterization. Appl Environ Microbiol. 2019;85(23):e01408-e1419.
Article
Google Scholar
Vu VV, Beeson WT, Phillips CM, Cate JHD, Marletta MA. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc. 2014;136:562–5.
Article
CAS
Google Scholar
Sun P, Laurent CVFP, Boerkamp VJP, van Erven G, Ludwig R, van Berkel WJH, et al. Regioselective C4 and C6 double oxidation of cellulose by lytic polysaccharide monooxygenases. Chemsuschem. 2022;15(2): e202102203.
Article
CAS
Google Scholar
Hemsworth GR, Johnston EM, Davies GJ, Walton PH. Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol. 2015;33(12):747–61.
Article
CAS
Google Scholar
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol. 2020;47(9–10):623–57.
Article
Google Scholar
Agger JW, Isaksen T, Várnai A, Vidal-melgosa S, Willats WGT, Ludwig R, et al. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A. 2014;111(17):6287–92.
Article
CAS
Google Scholar
Frommhagen M, Sforza S, Westphal AH, Visser J, Hinz SWA, Koetsier MJ, et al. Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels. 2015;8(1):1–12.
Article
CAS
Google Scholar
Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, et al. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels. 2015;8(1):1–14.
Article
CAS
Google Scholar
Hegnar OA, Østby H, Petrović DM, Olsson L, Várnai A, Eijsink VGH. Quantifying oxidation of cellulose-associated glucuronoxylan by two lytic polysaccharide monooxygenases from Neurospora crassa. Appl Environ Microbiol. 2021;87(24):e01652-e1721.
Article
CAS
Google Scholar
Kojima Y, Várnai A, Ishida T, Sunagawa N, Petrovic DM, Igarashi K, et al. A lytic polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot fungus Gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl Environ Microbiol. 2016;82(22):6557–72.
Article
CAS
Google Scholar
Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A. Plant cell walls. 1st ed. New York: Garland Science; 2010.
Book
Google Scholar
Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61(1):263–89.
Article
CAS
Google Scholar
Gellerstedt G, Ek M, Henriksson G. Wood chemistry and biotechnology. 1st ed. Berlin: Walter de Gruyter GmbH and Co.; 2009.
Google Scholar
Chong SL, Virkki L, Maaheimo H, Juvonen M, Derba-Maceluch M, Koutaniemi S, et al. O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology. 2014;24(6):494–506.
Article
CAS
Google Scholar
Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, et al. GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J. 2013;74(3):423–34.
Article
CAS
Google Scholar
Busse-Wicher M, Gomes TCFF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J. 2014;79(3):492–506.
Article
CAS
Google Scholar
Martínez-Abad A, Giummarella N, Lawoko M, Vilaplana F. Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chem. 2018;20(11):2534–46.
Article
Google Scholar
Busse-Wicher M, Li A, Silveira RL, Pereira CS, Tryfona T, Gomes TCF, et al. Evolution of xylan substitution patterns in Gymnosperms and Angiosperms: implications for xylan interaction with cellulose. Plant Physiol. 2016;171(4):2418–31.
Article
CAS
Google Scholar
Martínez-Abad A, Berglund J, Toriz G, Gatenholm P, Henriksson G, Lindström M, et al. Regular motifs in xylan modulate molecular flexibility and interactions with cellulose surfaces. Plant Physiol. 2017;175(4):1579–92.
Article
Google Scholar
Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K, Iuga D, et al. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants. 2017;3(11):859–65.
Article
CAS
Google Scholar
Terrett OM, Lyczakowski JJ, Yu L, Iuga D, Franks WT, Brown SP, et al. Molecular architecture of softwood revealed by solid-state NMR. Nat Commun. 2019;10(1):1–11.
Article
Google Scholar
Martínez-Abad A, Jiménez-Quero A, Wohlert J, Vilaplana F. Influence of the molecular motifs of mannan and xylan populations on their recalcitrance and organization in spruce softwoods. Green Chem. 2020;22(12):3956–70.
Article
Google Scholar
Kabel MA, van den Borne H, Vincken JPP, Voragen AGJJ, Schols HA. Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym. 2007;69(1):94–105.
Article
CAS
Google Scholar
Köhnke T, Östlund Å, Brelid H. Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromol. 2011;12(7):2633–41.
Article
Google Scholar
Bosmans TJ, Stépán AM, Toriz G, Renneckar S, Karabulut E, Wågberg L, et al. Assembly of debranched xylan from solution and on nanocellulosic surfaces. Biomacromol. 2014;15(3):924–30.
Article
CAS
Google Scholar
Shrestha UR, Smith S, Pingali SV, Yang H, Zahran M, Breunig L, et al. Arabinose substitution effect on xylan rigidity and self-aggregation. Cellulose. 2019;26(4):2267–78.
Article
CAS
Google Scholar
Gu J, Catchmark JM. The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose. 2013;20(4):1613–27.
Article
CAS
Google Scholar
Sun P, de Munnik M, van Berkel WJH, Kabel MA. Extending the diversity of Myceliophthora thermophila LPMOs: Two different xyloglucan cleavage profiles. Carbohydr Polym. 2022;288: 119373.
Article
CAS
Google Scholar
Tõlgo M, Hegnar OA, Østby H, Várnai A, Vilaplana F, Eijsink VGH, et al. Comparison of six lytic polysaccharide monooxygenases from Thermothielavioides terrestris shows that functional variation underlies the multiplicity of LPMO genes in filamentous fungi. Appl Environ Microbiol. 2022;88(6):e00096-e122.
Article
Google Scholar
Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler AC, Brown SP, DeAzevedo ER, et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat Commun. 2016;7(1):1–9.
Article
Google Scholar
Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol. 2011;29(10):922–7.
Article
CAS
Google Scholar
Tõlgo M, Hüttner S, Rugbjerg P, Thuy NT, Thanh VN, Larsbrink J, et al. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Biotechnol Biofuels. 2021;14(1):1–16.
Article
Google Scholar
Berglund J, Mikkelsen D, Flanagan BM, Dhital S, Gaunitz S, Henriksson G, et al. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun. 2020;11(1):1–16.
Article
Google Scholar
Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, et al. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem. 2014;289(1):53–64.
Article
CAS
Google Scholar
Siguier B, Haon M, Nahoum V, Marcellin M, Burlet-Schiltz O, Coutinho PM, et al. First structural insights into α-l-Arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. J Biol Chem. 2014;289(8):5261–73.
Article
CAS
Google Scholar
Megazyme. α-L-Arabinofuranosidase (Ustilago maydis) [Internet]. https://www.megazyme.com/alpha-l-arabinofuranosidase-ustilago-maydis?sSearch=GH62. Accessed 24 Jul 2022.
Westereng B, Arntzen M, Agger JW, Vaaje-Kolstad G, Eijsink VGH. Analyzing activities of LPMO by liquid chromatography and mass spectrometry. Protein-carbohydrate Interact Methods Protoc. 2017;1588:209–14.
Google Scholar
Calderaro F, Bevers LE, van den Berg MA. Oxidative power: tools for assessing LPMO activity on cellulose. Biomolecules. 2021;11(8):1098.
Article
CAS
Google Scholar
Zhang X, Qu T, Mosier NS, Han L, Xiao W. Cellulose modification by recyclable swelling solvents. Biotechnol Biofuels. 2018;11(1):1–12.
Article
Google Scholar
Arnling Bååth J, Martínez-Abad A, Berglund J, Larsbrink J, Vilaplana F, Olsson L. Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnol Biofuels. 2018;11(1):1–15.
Article
Google Scholar
Li X, Kouzounis D, Kabel MA, de Vries RP. GH10 and GH11 endoxylanases in Penicillium subrubescens: comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus. N Biotechnol. 2022;70:84–92.
Article
CAS
Google Scholar
McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P, Bulone V, et al. A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnol Biofuels. 2016;9(1):1–13.
Article
Google Scholar
Kmezik C, Bonzom C, Olsson L, Mazurkewich S, Larsbrink J. Multimodular fused acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass. Biotechnol Biofuels. 2020;13(1):1–14.
Article
Google Scholar
Basotra N, Dhiman SS, Agrawal D, Sani RK, Tsang A, Chadha BS. Characterization of a novel lytic polysaccharide monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior. Carbohydr Res. 2019;478:46–53.
Article
CAS
Google Scholar
Chorozian K, Karnaouri A, Karantonis A, Souli M, Topakas E. Characterization of a dual cellulolytic/xylanolytic AA9 lytic polysaccharide monooxygenase from Thermothelomyces thermophilus and its utilization toward nanocellulose production in a multi-step bioprocess. ACS Sustain Chem Eng. 2022;10:8919–29.
Article
CAS
Google Scholar
Simmons TJ, Frandsen KEH, Ciano L, Tryfona T, Lenfant N, Poulsen JC, et al. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nat Commun. 2017;8(1):1–12.
Article
CAS
Google Scholar
Solhi L, Li J, Li J, Heyns NMI, Brumer H. Oxidative enzyme activation of cellulose substrates for surface modification. Green Chem. 2022;24(10):4026–40.
Article
CAS
Google Scholar
Monclaro AV, Petrović DM, Alves GSC, Costa MMC, Midorikawa GEO, Miller RNG, et al. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLoS ONE. 2020;15(7): e0235642.
Article
CAS
Google Scholar
Couturier M, Ladevèze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol. 2018;14(3):306–10.
Article
CAS
Google Scholar
Hüttner S, Nguyen TT, Granchi Z, Chin-A-Woeng T, Ahrén D, Larsbrink J, et al. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea. Biotechnol Biofuels. 2017;10(1):1–16.
Article
Google Scholar
Arntzen M, Bengtsson O, Várnai A, Delogu F, Mathiesen G, Eijsink VGH. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci Rep. 2020;10(1):1–17.
Article
Google Scholar
Várnai A, Huikko L, Pere J, Siika-aho M, Viikari L. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol. 2011;102(19):9096–104.
Article
Google Scholar
Hu J, Arantes V, Saddler JN. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels. 2011;4(1):1–14.
Article
CAS
Google Scholar
Carpita NC, McCann MC. Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem. 2020;295(44):15144–57.
Article
CAS
Google Scholar
Busse-Wicher M, Grantham NJ, Lyczakowski JJ, Nikolovski N, Dupree P. Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochem Soc Trans. 2016;44(1):74–8.
Article
CAS
Google Scholar
Várnai A, Tang C, Bengtsson O, Atterton A, Mathiesen G, Eijsink VGH. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Fact. 2014;13(1):57.
Article
Google Scholar
Wood TM. Preparation of crystalline, amorphous, and dyed cellulase substrates. In: Methods in enzymology. Academic Press; 1988. p. 19–25. https://doi.org/10.1016/0076-6879(88)60103-0
Niedermeyer THJ, Strohalm M. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS ONE. 2012;7(9): e44913.
Article
CAS
Google Scholar