Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 2009, 8: 40. 10.1186/1475-2859-8-40
Article
Google Scholar
Bera AK, Sedlak M, Khan A, Ho NWY: Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol 2010, 87: 1803-1811. 10.1007/s00253-010-2609-0
Article
CAS
Google Scholar
Van-Vleet JH, Jeffries TW: Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009, 20: 300-306. 10.1016/j.copbio.2009.06.001
Article
CAS
Google Scholar
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74: 937-953. 10.1007/s00253-006-0827-2
Article
Google Scholar
Scalcinati G, Otero JM, Van-Vleet JR, Jeffries TW, Olsson L, Nielsen J: Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 2012, 12: 582-597. 10.1111/j.1567-1364.2012.00808.x
Article
CAS
Google Scholar
Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae . Metab Eng 2012, 14: 611-622. 10.1016/j.ymben.2012.07.011
Article
CAS
Google Scholar
Sonderegger M, Sauer U: Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microb 2003, 69: 1990-1998. 10.1128/AEM.69.4.1990-1998.2003
Article
CAS
Google Scholar
Jeffries TW, Jin YS: Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 2004, 63: 495-509. 10.1007/s00253-003-1450-0
Article
CAS
Google Scholar
Ho NWY, Chen Z, Brainard AP: Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microb 1998, 64: 1852-1859.
CAS
Google Scholar
Richard P, Toivari MH, Penttilä M: The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 2000, 190: 39-43. 10.1111/j.1574-6968.2000.tb09259.x
Article
CAS
Google Scholar
Harhangi HR, Akhmanova AS, Emmens R, van der-Drift C, De-Laat WT, Van-Dijken JP, Jetten MS, Pronk JT, Op den Camp HJ: Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 2003, 180: 134-141. 10.1007/s00203-003-0565-0
Article
CAS
Google Scholar
Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, De-Laat WT, Den-Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae ? FEMS Yeast Res 2003, 4: 69-78. 10.1016/S1567-1356(03)00141-7
Article
CAS
Google Scholar
Lee SM, Jellison T, Alper HS: Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae . Appl Environ Microbiol 2012, 78: 5708-5716. 10.1128/AEM.01419-12
Article
CAS
Google Scholar
Brat D, Boles E, Wiedemann B: Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae . Appl Environ Microbiol 2009, 75: 2304-2311. 10.1128/AEM.02522-08
Article
CAS
Google Scholar
Ma M, Liu Z, Moon J: Genetic engineering of inhibitor-tolerant Saccharomyces cerevisiae for improved xylose utilization in ethanol production. BioEnergy Research 2012, 5: 459-469. 10.1007/s12155-011-9176-9
Article
CAS
Google Scholar
Aeling KA, Salmon KA, Laplaza JM, Li L, Headman JR, Hutagalung AH, Picataggio S: Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 2012, 39: 1597-1604. 10.1007/s10295-012-1169-y
Article
CAS
Google Scholar
Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A: Xylose isomerase from polycentric fungus Orpinomyces : gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 2009, 82: 1067-1078. 10.1007/s00253-008-1794-6
Article
CAS
Google Scholar
Matte A, Forsberg CW, Gibbins AMV: Enzymes associated with metabolism of xylose and other pentoses by Prevotella ( Bacteroides ) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Can J Microbiol 1992, 38: 370-376. 10.1139/m92-063
Article
CAS
Google Scholar
Dodd D, Mackie RI, Cann IK: Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes . Mol Microbiol 2011, 79: 292-304. 10.1111/j.1365-2958.2010.07473.x
Article
CAS
Google Scholar
Avgustin G, Wright F, Flint HJ: Genetic diversity and phylogenetic relationships among strains of Prevotella ( Bacteroides ) ruminicola from the rumen. Int J Syst Bacteriol 1994, 44: 246-255. 10.1099/00207713-44-2-246
Article
CAS
Google Scholar
Avgustin G, Wallace RJ, Flint HJ: Phenotypic diversity among ruminal Isolates of Prevotella ruminicola: Proposal of Prevotella brevis sp. nov., Prevotella byantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. International Journal of Systematic Bacteriology. Int J Syst Bacteriol 1997, 47: 284-288. 10.1099/00207713-47-2-284
Article
CAS
Google Scholar
Funke M, Diederichs S, Kensy F, Müller C, Büchs J: The baffled microtiter plate: Increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 2009, 103: 1118-1128. 10.1002/bit.22341
Article
CAS
Google Scholar
Warringer J, Blomberg A: Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae . Yeast 2003, 20: 53-67. 10.1002/yea.931
Article
CAS
Google Scholar
Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Van-Dijken JP, Pronk JT: Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5: 399-409. 10.1016/j.femsyr.2004.09.010
Article
CAS
Google Scholar
Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF: Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 2007, 6: 5. 10.1186/1475-2859-6-5
Article
Google Scholar
Parachin NS, Gorwa-Grauslund MF: Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. Biotechnol Biofuels 2011, 4: 9. 10.1186/1754-6834-4-9
Article
CAS
Google Scholar
Hector RE, Dien BS, Cotta MA, Qureshi N: Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol 2011, 38: 1193-1202. 10.1007/s10295-010-0896-1
Article
CAS
Google Scholar
Bera AK, Ho NW, Khan A, Sedlak M: A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. J Ind Microbiol Biot 2011, 38: 617-626. 10.1007/s10295-010-0806-6
Article
CAS
Google Scholar
Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF: The expression of a Pichia stipitis xylose reductase mutant with higher K
m
for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae . Biotechnol Bioeng 2006, 93: 665-673. 10.1002/bit.20737
Article
CAS
Google Scholar
Petschacher B, Nidetzky B: Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae . Microb Cell Fact 2008, 7: 9. 10.1186/1475-2859-7-9
Article
Google Scholar
Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae . Biotechnol Biofuels 2009, 2: 9. 10.1186/1754-6834-2-9
Article
Google Scholar
Krahulec S, Klimacek M, Nidetzky B: Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae . J Biotechnol 2012, 158: 192-202. 10.1016/j.jbiotec.2011.08.026
Article
CAS
Google Scholar
Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G: Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 2009, 19: 2271-2278. 10.1101/gr.094276.109
Article
CAS
Google Scholar
Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D: Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae . P Natl Acad Sci USA 2002, 99: 16144-16149. 10.1073/pnas.242624799
Article
CAS
Google Scholar
Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Gietz D, Woods RA: Transformation of yeasts by the lithium acetate/single-stranded carrier/polyethylene glycol method. Methods Enzymol 2002, 350: 87-96.
Article
CAS
Google Scholar
Amberg BC, Burke DJ, Strathern JN: Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. 2005 edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2005.
Google Scholar
Whitehead TR, Cotta MA, Collins MD, Falsen E, Lawson PA: Bacteroides coprosuis sp. nov., isolated from swine-manure storage pits. Int J Syst Evol Microbiol 2005, 55: 2515-2518. 10.1099/ijs.0.63869-0
Article
CAS
Google Scholar
Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P: Multifunctional yeast high-copy-number shuttle vectors. Gene 1992, 110: 119-122. 10.1016/0378-1119(92)90454-W
Article
CAS
Google Scholar
Hector RE, Mertens JA, Bowman MJ, Nichols NN, Cotta MA, Hughes SR: Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast 2011, 28: 645-660. 10.1002/yea.1893
Article
CAS
Google Scholar