Xu X, Ren S, Chen X, Ge J, Xu Z, Huang H, Sun H, Gu Y, Zhou T, Li J, et al. Generation of hepatitis B virus PreS2-S antigen in Hansenula polymorpha. Virol Sin. 2014;29(6):403–9.
Article
PubMed Central
PubMed
Google Scholar
Kurylenko OO, Ruchala J, Hryniv OB, Abbas CA, Dmytruk KV, Sibirny AA. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation. Microb Cell Fact. 2014;13:122.
Article
PubMed Central
PubMed
Google Scholar
Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA. Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng. 2009;11(4–5):234–42.
Article
CAS
PubMed
Google Scholar
Moussa M, Ibrahim M, El Ghazaly M, Rohde J, Gnoth S, Anton A, Kensy F, Mueller F. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha. BMC Biotechnol. 2012;12:96.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wagner JM, Alper HS. Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol. 2016;89:126–36.
Article
CAS
PubMed
Google Scholar
Saraya R, Krikken AM, Kiel JA, Baerends RJ, Veenhuis M, van der Klei IJ. Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res. 2012;12(3):271–8.
Article
CAS
PubMed
Google Scholar
Chen Z, Wang Z, He X, Guo X, Li W, Zhang B. Uricase production by a recombinant Hansenula polymorpha strain harboring Candida utilis uricase gene. Appl Microbiol Biotechnol. 2008;79(4):545–54.
Article
CAS
PubMed
Google Scholar
Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol. 2011;11:8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Oh D-B, Park J-S, Kim MW, Cheon SA, Kim EJ, Moon HY, Kwon O, Rhee SK, Kang HA. Glycoengineering of the methylotrophic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl coreN-glycan by blocking core oligosaccharide assembly. Biotechnol J. 2008;3(5):659–68.
Article
CAS
PubMed
Google Scholar
Gemmill TR, Trimble RB. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta. 1999;1426(2):227–37.
Article
CAS
PubMed
Google Scholar
Cheon SA, Choo J, Ubiyvovk VM, Park JN, Kim MW, Oh DB, Kwon O, Sibirny AA, Kim JY, Kang HA. New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha. Yeast. 2009;26(9):507–21.
Article
CAS
PubMed
Google Scholar
Cebollero E, Gonzalez R. Comparison of two alternative dominant selectable markers for wine yeast transformation. Appl Environ Microbiol. 2004;70(12):7018–23.
Article
CAS
PubMed Central
PubMed
Google Scholar
Merckelbach A, Godecke S, Janowicz ZA, Hollenberg CP. Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl Microbiol Biotechnol. 1993;40(2–3):361–4.
CAS
PubMed
Google Scholar
Agaphonov MO, Trushkina PM, Sohn JH, Choi ES, Rhee SK, Ter-Avanesyan MD. Vectors for rapid selection of integrants with different plasmid copy numbers in the yeast Hansenula polymorpha DL1. Yeast. 1999;15(7):541–51.
Article
CAS
PubMed
Google Scholar
Song P, Liu S, Guo X, Bai X, He X, Zhang B. Markerless gene deletion in methylotrophic Hansenula polymorpha by using mazF as counter-selectable marker. Anal Biochem. 2014;468C:66–74.
Google Scholar
Qian W, Song H, Liu Y, Zhang C, Niu Z, Wang H, Qiu B. Improved gene disruption method and Cre–loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J Microbiol Methods. 2009;79(3):253–9.
Article
CAS
PubMed
Google Scholar
Numamoto M, Maekawa H, Kaneko Y. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng. 2017;124(5):487–92.
Article
CAS
PubMed
Google Scholar
Ronda C, Maury J, Jakociunas T, Jacobsen SA, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:97.
Article
PubMed Central
PubMed
Google Scholar
Fuller KK, Chen S, Loros JJ, Dunlap JC. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell. 2015;14(11):1073–80.
Article
CAS
PubMed Central
PubMed
Google Scholar
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science. 2014;346(6213):1258096.
Article
PubMed
Google Scholar
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol. 2015;4(5):585–94.
Article
CAS
PubMed
Google Scholar
Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS, et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015;1(1):88–96.
Article
CAS
PubMed
Google Scholar
Gao S, Tong Y, Wen Z, Zhu L, Ge M, Chen D, Jiang Y, Yang S. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR–Cas9 system. J Ind Microbiol Biotechnol. 2016;43(8):1085–93.
Article
CAS
PubMed
Google Scholar
Juergens H, Varela JA, Gorter de Vries AR, Perli T, Gast VJM, Gyurchev NY, Rajkumar AS, Mans R, Pronk JT, Morrissey JP, et al. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Res. 2018;18(3):012.
Article
Google Scholar
Thomas DP. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell. 1980;19(765–774):765–74.
Google Scholar
Maleszka R, Clark-Walker GD. Yeasts have a four-fold variation in ribosomal DNA copy number. Yeast. 1993;9(1):53–8.
Article
CAS
PubMed
Google Scholar
Klabunde J, Diesel A, Waschk D, Gellissen G, Hollenberg CP, Suckow M. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol. 2002;58(6):797–805.
Article
CAS
PubMed
Google Scholar
Moon HY, Lee DW, Sim GH, Kim HJ, Hwang JY, Kwon MG, Kang BK, Kim JM, Kang HA. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts. J Biotechnol. 2016;233:190–9.
Article
CAS
PubMed
Google Scholar
Wu J, Fu W, Luo J, Zhang T. Expression and purification of human endostatin from Hansenula polymorpha A16. Protein Expr Purif. 2005;42(1):12–9.
Article
PubMed
Google Scholar
Leite FC, Dos Anjos RS, Basilio AC, Leal GF, Simoes DA, de Morais MA. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae. Plasmid. 2013;69(1):114–7.
Article
CAS
PubMed
Google Scholar
Gonzalez C, Perdomo G, Tejera P, Brito N, Siverio JM. One-step, PCR-mediated, gene disruption in the yeast Hansenula polymorpha. Yeast. 1999;15(13):1323–9.
Article
CAS
PubMed
Google Scholar
Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng. 2015;32:1–11.
Article
PubMed
Google Scholar
Shi S, Liang Y, Zhang MM, Ang EL, Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng. 2016;33:19–27.
Article
CAS
PubMed
Google Scholar
Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M. Implementation of the CRISPR–Cas9 system in fission yeast. Nat Commun. 2014;5:5344.
Article
CAS
PubMed
Google Scholar
Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR–Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol. 2016;82(16):4876–95.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol. 2017;6(3):402–9.
Article
CAS
PubMed
Google Scholar
Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raue HA, Planta RJ. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene. 1989;79(2):199–206.
Article
CAS
PubMed
Google Scholar
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics. 2013;14:399.
Article
PubMed Central
PubMed
Google Scholar
Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact. 2010;9:32.
Article
PubMed Central
PubMed
Google Scholar
Gidijala L, van der Klei IJ, Veenhuis M, Kiel JA. Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene. FEMS Yeast Res. 2007;7(7):1160–7.
Article
CAS
PubMed
Google Scholar
Liu Z, Liang Y, Ang EL, Zhao H. A new era of genome integration-simply cut and paste! ACS Synth Biol. 2017;6(4):601–9.
Article
CAS
PubMed
Google Scholar
Sun H, Zang X, Liu Y, Cao X, Wu F, Huang X, Jiang M, Zhang X. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites. Appl Microbiol Biotechnol. 2015;99(23):10097–106.
Article
CAS
PubMed
Google Scholar
Lian J, Jin R, Zhao H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration. Biotechnol Bioeng. 2016;113(11):2462–73.
Article
CAS
PubMed
Google Scholar
Steinborn G, Boer E, Scholz A, Tag K, Kunze G, Gellissen G. Application of a wide-range yeast vector (CoMed) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts. Microb Cell Fact. 2006;5:33.
Article
PubMed Central
PubMed
Google Scholar
Sohn JH, Choi ES, Kang HA, Rhee JS, Agaphonov MO, Ter-Avanesyan MD, Rhee SK. A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1. Appl Microbiol Biotechnol. 1999;51(6):800–7.
Article
CAS
PubMed
Google Scholar
Terentiev Y, Pico AH, Boer E, Wartmann T, Klabunde J, Breuer U, Babel W, Suckow M, Gellissen G, Kunze G. A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements. J Ind Microbiol Biotechnol. 2004;31(5):223–8.
Article
CAS
PubMed
Google Scholar
Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157–67.
Article
CAS
PubMed
Google Scholar
Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact. 2017;16(1):201.
Article
PubMed Central
PubMed
Google Scholar
Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact. 2017;16(1):205.
Article
PubMed Central
PubMed
Google Scholar
Zhang G, Wang W, Deng A, Sun Z, Zhang Y, Liang Y, Che Y, Wen T. A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genet. 2012;8(9):e1002987.
Article
CAS
PubMed Central
PubMed
Google Scholar
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41(7):4336–43.
Article
CAS
PubMed Central
PubMed
Google Scholar
Faber KN, Haima P, Harder W, Veenhuis M, Ab G. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet. 1994;25(4):305–10.
Article
CAS
PubMed
Google Scholar
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96.
Article
CAS
PubMed
Google Scholar
Bai H, Deng A, Liu S, Cui D, Qiu Q, Wang L, Yang Z, Wu J, Shang X, Zhang Y, et al. A novel tool for microbial genome editing using the restriction modification system. ACS Synth Biol. 2018;7(1):98–106.
Article
CAS
PubMed
Google Scholar
Kolacsek O, Pergel E, Varga N, Apati A, Orban TI. Ct shift: a novel and accurate real-time PCR quantification model for direct comparison of different nucleic acid sequences and its application for transposon quantifications. Gene. 2017;598:43–9.
Article
CAS
PubMed
Google Scholar
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–32.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wu J, Deng A, Sun Q, Bai H, Sun Z, Shang X, Zhang Y, Liu Q, Liang Y, Liu S, et al. Bacterial genome editing via a designed toxin-antitoxin cassette. ACS Synth Biol. 2018;7(3):822–31.
Article
CAS
PubMed
Google Scholar