Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3.
Article
CAS
Google Scholar
Bom IJ, Klis FM, de Nobel H, Brul S. A new strategy for inhibition of the spoilage yeasts Saccharomyces cerevisiae and Zygosaccharomyces bailii based on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidylinositol (GPI)-dependent yeast wall protein layer. FEMS Yeast Res. 2001;1(3):187–94. https://doi.org/10.1111/j.1567-1364.2001.tb00033.x.
Article
CAS
PubMed
Google Scholar
Ullah A, Orij R, Brul S, Smits GJ. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78(23):8377–87. https://doi.org/10.1128/AEM.02126-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell JB. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol. 1992;73:363–70. https://doi.org/10.1111/j.1365-2672.1992.tb04990.x.
Article
CAS
Google Scholar
Zhao J, Wang Z, Wang M, He Q, Zhang H. The inhibition of Saccharomyces cerevisiae cells by acetic acid quantified by electrochemistry and fluorescence. Bioelectrochemistry. 2008;72(2):117–21. https://doi.org/10.1016/j.bioelechem.2007.11.015.
Article
CAS
PubMed
Google Scholar
Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leão C, Rodrigues F, Ludovico P. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics. 2009;9(3):720–32. https://doi.org/10.1002/pmic.200700816.
Article
CAS
PubMed
Google Scholar
Freese E, Sheu CW, Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973;241:321–5. https://doi.org/10.1038/241321a0.
Article
CAS
PubMed
Google Scholar
Stratford M, Anslow PA. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett Appl Microbiol. 1998;27:203–6. https://doi.org/10.1046/j.1472-765X.1998.00424.x.
Article
CAS
PubMed
Google Scholar
Piper PW. Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic Biol Med. 1999;27:1219–27. https://doi.org/10.1016/S0891-5849(99)00147-1.
Article
CAS
PubMed
Google Scholar
Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem. 2003;270:3189–95. https://doi.org/10.1046/j.1432-1033.2003.03701.x.
Article
CAS
PubMed
Google Scholar
Carmelo V, Santos H, Sá-Correia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta. 1997;1325:63–70. https://doi.org/10.1016/S0005-2736(96)00245-3.
Article
CAS
PubMed
Google Scholar
Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schüller C, Kuchler K, Piper PW. Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast. 2003;20:575–85. https://doi.org/10.1002/yea.981.
Article
CAS
PubMed
Google Scholar
Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ. Activity of the plasma membrane H-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol. 1996;62:3158–64.
CAS
PubMed
PubMed Central
Google Scholar
Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett. 2011;33:277–84. https://doi.org/10.1007/s10529-010-0433-3.
Article
CAS
PubMed
Google Scholar
Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM. Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol. 2013;97:2067–76. https://doi.org/10.1007/s00253-013-4698-z.
Article
CAS
PubMed
Google Scholar
Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl Environ Microbiol. 2016;82:2156–66. https://doi.org/10.1128/AEM.03718-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Nasution O, Lee YM, Kim E, Choi W, Kim W. Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2017;101:229–39. https://doi.org/10.1007/s00253-016-7898-5.
Article
CAS
PubMed
Google Scholar
Meijnen JP, Randazzo P, Foulquié-Moreno MR, van den Brink J, Vandecruys P, Stojiljkovic M, et al. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol Biofuels. 2016;9:5. https://doi.org/10.1186/s13068-015-0421-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels. 2016;9:173. https://doi.org/10.1186/s13068-016-0583-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henriques SF, Mira NP, Sá-Correia I. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. Biotechnol Biofuels. 2017;10:96. https://doi.org/10.1186/s13068-017-0781-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palma M, Dias PJ, Roque FC, Luzia L, Guerreiro JF, Sá-Correia I. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2. BMC Genomics. 2017;18:75. https://doi.org/10.1186/s12864-016-3443-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS. 2012;16:374–86. https://doi.org/10.1089/omi.2011.0127.
Article
CAS
PubMed
Google Scholar
Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS ONE. 2013;8(9):e73936. https://doi.org/10.1371/journal.pone.0073936.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol Bioeng. 2016;113(4):744–53. https://doi.org/10.1002/bit.25845.
Article
CAS
PubMed
Google Scholar
Guerreiro JF, Muir A, Ramachandran S, Thorner J, Sá-Correia I. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J. 2016;473:4311–25. https://doi.org/10.1042/BCJ20160565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerreiro JF, Mira NP, dos Santos AX, Riezman H, Sá-Correia I. Membrane phosphoproteomics of yeast early response to acetic acid: role of Hrk1 kinase and lipid biosynthetic pathways, in particular sphingolipids. Front Microbiol. 2017;8:1302. https://doi.org/10.3389/fmicb.2017.01302.
Article
PubMed
PubMed Central
Google Scholar
Rattray JB, Schibeci A, Kidby DK. Lipid of yeasts. Bacteriol Rev. 1975;39(3):197–231.
CAS
PubMed
PubMed Central
Google Scholar
Patton JL, Lester RL. The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. J Bacteriol. 1991;173:3101–8. https://doi.org/10.1128/jb.173.10.3101-3108.1991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Z, Olsson L. Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res. 2014;14(8):1234–48. https://doi.org/10.1111/1567-1364.12221.
Article
CAS
PubMed
Google Scholar
Guo ZP, Olsson L. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density. FEMS Yeast Res. 2016;16(7):fow072. https://doi.org/10.1093/femsyr/fow072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serov AE, Popova AS, Fedorchuk VV, Tishkov VI. Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem J. 2002;367(Pt 3):841–7.
Article
CAS
Google Scholar
Müllner H, Daum G. Dynamics of neutral lipid storage in yeast. Acta Biochim Pol. 2004;51(2):323–47.
PubMed
Google Scholar
Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13:2598–606. https://doi.org/10.1091/mbc.E01-12-0161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stukey JE, McDonough VM, Martin CE. Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem. 1989;264(28):16537–44.
CAS
PubMed
Google Scholar
Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res. 2008;47(3):157–71. https://doi.org/10.1016/j.plipres.2008.01.001.
Article
CAS
PubMed
Google Scholar
Gasch AP, Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics. 2002;2(4–5):181–92. https://doi.org/10.1007/s10142-002-0058-2.
Article
CAS
PubMed
Google Scholar
Leber R, Zinser E, Zellnig G, Paltauf F, Daum G. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast. 1994;10(11):1421–8. https://doi.org/10.1002/yea.320101105.
Article
CAS
PubMed
Google Scholar
Matias AC, Pedroso N, Teodoro N, Marinho HS, Antunes F, Nogueira JM, Herrero E, Cyrne L. Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radic Biol Med. 2007;43(10):1458–65. https://doi.org/10.1016/j.freeradbiomed.2007.08.003.
Article
CAS
PubMed
Google Scholar
Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, et al. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol Lett. 2016;38:1097–106. https://doi.org/10.1007/s10529-016-2085-4.
Article
CAS
PubMed
Google Scholar
Palma M, Guerreiro JF, Sá-Correia I. Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front Microbiol. 2018;9:274. https://doi.org/10.3389/fmicb.2018.00274.
Article
PubMed
PubMed Central
Google Scholar
Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292(1):C33–44. https://doi.org/10.1152/ajpcell.00243.2006.
Article
CAS
PubMed
Google Scholar
Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv. 2005;5:94–111. https://doi.org/10.1124/mi.5.2.7.
Article
CAS
PubMed
Google Scholar
Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett. 2001;509:435–8. https://doi.org/10.1016/S0014-5793(01)03206-9.
Article
CAS
PubMed
Google Scholar
Swan TM, Watson K. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett. 1998;169(1):191–7. https://doi.org/10.1111/j.1574-6968.1998.tb13317.x.
Article
CAS
PubMed
Google Scholar
Walker-Caprioglio HM, Casey WM, Parks LW. Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Appl Environ Microbiol. 1990;56:2853–7.
CAS
PubMed
PubMed Central
Google Scholar
Alexandre H, Rousseaux I, Charpentier C. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett. 1994;124:17–22. https://doi.org/10.1111/j.1574-6968.1994.tb07255.x.
Article
CAS
PubMed
Google Scholar
Fletcher E, Feizi A, Bisschops MMM, Hallström BM, Khoomrung S, Siewers V, Nielsen J. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng. 2017;39:19–28. https://doi.org/10.1016/j.ymben.2016.10.010.
Article
CAS
PubMed
Google Scholar
Satoh T, Horie M, Watanabe H, Tsuchiya Y, Kamei T. Enzymatic properties of squalene epoxidase from Saccharomyces cerevisiae. Biol Pharm Bull. 1993;16:349–52.
Article
CAS
Google Scholar
Fernandas L, Côrte-Real M, Loureiro V, Loureiro-Dias MC, Leão C. Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid. Lett Appl Microbiol. 1997;25:249–53.
Article
Google Scholar
Vanegas JM, Contreras MF, Faller R, Longo ML. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J. 2012;102(3):507–16. https://doi.org/10.1016/j.bpj.2011.12.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czabany T, Athenstaedt K, Daum G. Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta. 2007;1771(3):299–309. https://doi.org/10.1016/j.bbalip.2006.07.001.
Article
CAS
PubMed
Google Scholar
Jensen-Pergakes K, Guo Z, Giattina M, Sturley SL, Bard M. Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacteriol. 2001;183:4950–7. https://doi.org/10.1128/JB.183.17.4950-4957.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leber R, Zinser E, Hrastnik C, Paltauf F, Daum G. Export of steryl esters from lipid particles and release of free sterols in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta. 1995;1234(1):119–26. https://doi.org/10.1016/0005-2736(94)00270-Y.
Article
PubMed
Google Scholar
Verduyn C, Postma E, Scheffers WA, van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501–17. https://doi.org/10.1002/yea.320080703.
Article
CAS
PubMed
Google Scholar
Larsson S, Nilvebrant NO, Jönsson LJ. Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol. 2001;57:167–74. https://doi.org/10.1007/s002530100742.
Article
CAS
PubMed
Google Scholar
Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JC. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol. 2012;194:686–701. https://doi.org/10.1128/JB.06112-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Hoek P, van Dijken JP, Pronk JT. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol. 2000;26:724–36. https://doi.org/10.1016/S0141-0229(00)00164-2.
Article
PubMed
Google Scholar
Khoomrung S, Chumnanpuen P, Jansa-Ard S, Ståhlman M, Nookaew I, Borén J, Nielsen J. Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal Chem. 2013;85(10):4912–9. https://doi.org/10.1021/ac3032405.
Article
CAS
PubMed
Google Scholar
Löfgren L, Ståhlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–700. https://doi.org/10.1194/jlr.D023036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khoomrung S, Chumnanpuen P, Jansa-Ard S, Nookaew I, Nielsen J. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2012;94:1637–46. https://doi.org/10.1007/s00253-012-4125-x.
Article
CAS
PubMed
Google Scholar
Geiser F, McAllan BM, Kenagy GJ. The degree of dietary fatty acid unsaturation affects torpor patterns and lipid composition of a hibernator. J Comp Physiol B. 1994;164(4):299–305. https://doi.org/10.1007/BF00346446.
Article
CAS
PubMed
Google Scholar
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156(1):119–22. https://doi.org/10.1016/0378-1119(95)00037-7.
Article
CAS
PubMed
Google Scholar
Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978;75:280–4. https://doi.org/10.1073/pnas.75.1.280.
Article
CAS
PubMed
Google Scholar
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):31–4. https://doi.org/10.1038/nprot.2007.13.
Article
CAS
PubMed
Google Scholar