Cosgrove DJ. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr Opin Plant Biol. 2018;46:77–86.
Article
CAS
PubMed
Google Scholar
Galletti R, Verger S, Hamant O, Ingram GC. Developing a ‘thick skin’: a paradoxical role for mechanical tension in maintaining epidermal integrity? Development. 2016;143(18):3249–58.
Article
CAS
PubMed
Google Scholar
Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M. Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS Biol. 2013;11(4):e1001531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javelle M, Vernoud V, Rogowsky PM, Ingram GC. Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 2011;189(1):17–39.
Article
CAS
PubMed
Google Scholar
Ziv C, Zhao ZZ, Gao YG, Xia Y. Multifunctional roles of plant cuticle during plant-pathogen interactions. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01088.
Article
PubMed
PubMed Central
Google Scholar
Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann Bot. 2015;115(7):1053–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segado P, Dominguez E, Heredia A. Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiol. 2016;170(2):935–46.
Article
CAS
PubMed
Google Scholar
Domínguez E, Heredia-Guerrero JA, Heredia A. The biophysical design of plant cuticles: an overview. New Phytol. 2011;189(4):938–49.
Article
PubMed
Google Scholar
Wang X, Wilson L, Cosgrove DJ. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J Exp Bot. 2020;71(9):2629–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Zheng Y, Cosgrove DJ. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J. 2016;85(2):179–92.
Article
CAS
PubMed
Google Scholar
Kafle K, Park YB, Lee CM, Stapleton JJ, Kiemle SN, Cosgrove DJ, et al. Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: a polarized FT-IR study. Cellulose. 2017;24(8):3145–54.
Article
CAS
Google Scholar
Wilson RH, Smith AC, Kacurakova M, Saunders PK, Wellner N, Waldron KW. The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol. 2000;124(1):397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suslov D, Verbelen JP, Vissenberg K. Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot. 2009;60(14):4175–87.
Article
CAS
PubMed
Google Scholar
Pont-Lezica RF, McNally JG, Pickard BG. Wall-to-membrane linkers in onion epidermis: some hypotheses. Plant Cell Environ. 1993;16(2):111–23.
Article
CAS
Google Scholar
Loodts J, Tijskens E, Wei CF, Vanstreels E, Nicolai B, Ramon H. Micromechanics: simulating the elastic behavior of onion epidermis tissue. J Texture Stud. 2006;37(1):16–34.
Article
Google Scholar
Vanstreels E, Alamar AC, Verlinden BE, Enninghorst A, Loodts JKA, Tijskens E, et al. Micromechanical behaviour of onion epidermal tissue. Postharvest Biol Technol. 2005;37(2):163–73.
Article
Google Scholar
Hepworth DG, Bruce DM. Relationships between primary plant cell wall architecture and mechanical properties for onion bulb scale epidermal cells. J Texture Stud. 2004;35(6):586–602.
Article
Google Scholar
Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ. Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose. 2014;21(2):853–62.
Article
Google Scholar
Durachko D, Park YB, Zhang T, Cosgrove D. Biomechanical characterization of onion epidermal cell walls. Bio-Protocol. 2017. https://doi.org/10.21769/BioProtoc.2662.
Article
PubMed
PubMed Central
Google Scholar
Zhang T, Tang H, Vavylonis D, Cosgrove DJ. Disentangling loosening from softening: insights into primary cell wall structure. Plant J. 2019;100:1101–17.
Article
CAS
PubMed
Google Scholar
Redgwell RJ, Selvendran RR. Structural features of cell-wall polysaccharides of onion Allium cepa. Carbohydr Res. 1986;157:183–99.
Article
CAS
Google Scholar
Mankarios AT, Hall MA, Jarvis MC, Threlfall DR, Friend J. Cell-wall polysaccharides from onions. Phytochemistry. 1980;19(8):1731–3.
Article
CAS
Google Scholar
Ng A, Parker ML, Parr AJ, Saunders PK, Smith AC, Waldron KW. Physicochemical characteristics of onion (Allium cepa L.) tissues. J Agric Food Chem. 2000;48(11):5612–7.
Article
CAS
PubMed
Google Scholar
Ng A, Smith AC, Waldron KW. Effect of tissue type and variety on cell wall chemistry of onion (Allium cepa L.). Food Chem. 1998;63(1):17–24.
Article
CAS
Google Scholar
Lopez-Sanchez P, Martinez-Sanz M, Bonilla MR, Sonni F, Gilbert EP, Gidley MJ. Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: roles of pectin. Food Hydrocolloids. 2020;98:105253.
Article
CAS
Google Scholar
Ohsumi C, Hayashi T. The oligosaccharide units of the xyloglucans in the cell-walls of bulbs of onion, garlic and their hybrid. Plant Cell Physiol. 1994;35(6):963–7.
CAS
PubMed
Google Scholar
Zhang T, Cosgrove DJ. Preparation of onion epidermal cell walls for imaging by atomic force microscopy (AFM). Bio-protocol. 2017;7:e2647.
Article
PubMed
PubMed Central
Google Scholar
Zheng Y, Wang X, Chen Y, Wagner E, Cosgrove DJ. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags. Plant J. 2018;92(2):211–26.
Article
CAS
Google Scholar
Ye D, Rongpipi S, Kiemle SN, Barnes WJ, Chaves AM, Zhu C, et al. Preferred crystallographic orientation of cellulose in plant primary cell walls. Nat Commun. 2020;11(1):4720.
Article
PubMed
PubMed Central
Google Scholar
Ye D, Kiemle SN, Rongpipi S, Wang X, Wang C, Cosgrove DJ, et al. Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls. Sci Rep. 2018;8(1):12449.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang S, Makarem M, Kiemle SN, Zheng Y, He X, Ye D, et al. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym. 2018;197:337–48.
Article
CAS
PubMed
Google Scholar
Kim K, Yi H, Zamil MS, Haque MA, Puri VM. Multiscale stress-strain characterization of onion outer epidermal tissue in wet and dry states. Am J Bot. 2015;102(1):12–20.
Article
PubMed
Google Scholar
Zamil MS, Yi HJ, Puri VM. The mechanical properties of plant cell walls soft material at the subcellular scale: the implications of water and of the intercellular boundaries. J Mater Sci. 2015;50(20):6608–23.
Article
CAS
Google Scholar
Dubois M, Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6.
Article
CAS
Google Scholar
De Ruiter GA, Schols HA, Voragen AG, Rombouts FM. Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem. 1992;207(1):176–85.
Article
PubMed
Google Scholar
Biswal AK, Atmodjo MA, Pattathil S, Amos RA, Yang XH, Winkeler K, et al. Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus. Biotechnol Biofuels. 2018. https://doi.org/10.1186/s13068-017-1002-y.
Article
PubMed
PubMed Central
Google Scholar
McCann MC, Carpita NC. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J Exp Bot. 2015;66(14):4109–18.
Article
CAS
PubMed
Google Scholar
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7.
Article
CAS
PubMed
Google Scholar
Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels. 2013;6(1):15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Widmer W. Analysis of biomass sugars and galacturonic acid by gradient anion exchange chromatography and pulsed amperometric detection without post-column addition. Biotechnol Lett. 2011;33(2):365–8.
Article
CAS
PubMed
Google Scholar
Zhang Z, Khan NM, Nunez KM, Chess EK, Szabo CM. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Chem. 2012;84(9):4104–10.
Article
CAS
PubMed
Google Scholar
Li J, Kisara K, Danielsson S, Lindstrom ME, Gellerstedt G. An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides. Carbohydr Res. 2007;342(11):1442–9.
Article
CAS
PubMed
Google Scholar
Saeman J, Moore W, Millet M. Sugar units present. Hydrolysis and quantitative paper chromatography. Methods Carbohydr Chem. 1963;3:54–69.
CAS
Google Scholar
Thompson JE, Fry SC. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta. 2000;211(2):275–86.
Article
CAS
PubMed
Google Scholar
Santander J, Martin T, Loh A, Pohlenz C, Gatlin DM, Curtiss R. Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. Microbiology (Reading). 2013;159(Pt 7):1471–86.
Article
CAS
Google Scholar
Black I, Heiss C, Azadi P. Comprehensive monosaccharide composition analysis of insoluble polysaccharides by permethylation to produce methyl alditol derivatives for gas chromatography/mass spectrometry. Anal Chem. 2019;91(21):13787–93.
Article
CAS
PubMed
Google Scholar
Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem. 2002;40(1):70–6.
Article
CAS
Google Scholar
Johnson RL, Schmidt-Rohr K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J Magn Reson. 2014;239:44–9.
Article
CAS
PubMed
Google Scholar
Zhao W, Fernando LD, Kirui A, Deligey F, Wang T. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nucl Magn Reson. 2020;107:101660.
Article
CAS
PubMed
Google Scholar
Kang X, Zhao W, Widanage MCD, Kirui A, Ozdenvar U, Wang T. CCMRD: a solid-state NMR database for complex carbohydrates. J Biomol NMR. 2020:1–7.
Wang T, Chen Y, Tabuchi A, Cosgrove DJ, Hong M. The target of β-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. Plant Physiol. 2016;172(4):2107–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Hong M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot. 2016;67(2):503–14.
Article
CAS
PubMed
Google Scholar
Guzman P, Fernandez V, Garcia ML, Khayet M, Fernandez A, Gil L. Localization of polysaccharides in isolated and intact cuticles of eucalypt, poplar and pear leaves by enzyme-gold labelling. Plant Physiol Biochem. 2014;76:1–6.
Article
CAS
PubMed
Google Scholar
López-Casado G, Matas AJ, Domínguez E, Cuartero J, Heredia A. Biomechanics of isolated tomato (Solanumlycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides. J Exp Bot. 2007;58(14):3875–83.
Article
PubMed
CAS
Google Scholar
Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, et al. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 2001;127(2):551–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirui A, Ling Z, Kang X, Dickwella Widanage MC, Mentink-Vigier F, French AD, et al. Atomic resolution of cotton cellulose structure enabled by dynamic nuclear polarization solid-state NMR. Cellulose. 2019;26(1):329–39.
Article
CAS
PubMed
Google Scholar
Perras FA, Luo H, Zhang X, Mosier NS, Pruski M, Abu-Omar MM. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR. J Phys Chem A. 2017;121(3):623–30.
Article
CAS
PubMed
Google Scholar
Zhao W, Kirui A, Deligey F, Mentink-Vigier F, Zhou Y, Zhang B, et al. Solid-state NMR of unlabeled plant cell walls: high-resolution structural analysis without isotopic enrichment. Biotechnol Biofuels. 2021;14(1):1–14.
Article
CAS
Google Scholar
Phyo P, Wang T, Kiemle SN, O’Neill H, Pingali SV, Hong M, et al. Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant Physiol. 2017;175(4):1593–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garleb KA, Bourquin LD, Fahey GC Jr. Neutral monosaccharide composition of various fibrus substrates: a comparison of hydrolytic procedures and use of anion-exchange high-performance liquid chromatography with pulsed amperometric detection of monosaccharides. J Agric Food Chem. 1989;37(5):1287–93.
Article
CAS
Google Scholar
Blake J, Richards G. Problems of lactonisation in the analysis of uronic acids. Carbohydr Res. 1968;8(3):275–81.
Article
CAS
Google Scholar